
Channels at the head of the queue!

Relaxed Memory Models and
Data-Race Detection tailored for

Shared-Memory Message-Passing Systems

Doctoral Dissertation by

Daniel S. Fava

Submitted to the
Faculty of Mathematics and Natural Sciences at the University of Oslo

for the degree Philosophiae Doctor in Computer Science

June 2021

Reliable Systems
Department of Informatics

University of Oslo
Norway

http://www.ifi.uio.no
http://www.uio.no

© Daniel Fava, 2021

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2407

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.

Abstract

Instructions, as they appear in a program’s text, dictate the behavior of single-
threaded programs. Unfortunately, our single threaded intuition does not fully carry
over to multi-threaded environments. If the environment is sequentially consistent,
then we can understand a multi-threaded program in terms of its text—more specif-
ically, in terms of how instructions from different threads can be interleaved. Mod-
ern computing environments, however, are not sequentially consistent. As a conse-
quence, the behavior of a multi-threaded program depends not only on the program
text, but also on the surrounding hardware and compiler optimizations. The overall
effect of an environment and its optimizations are documented in a memory model.

In this thesis, we explore the specification of memory models using a small step
operational semantics. By being concise and executable, we believe that operational
semantics can build on our shared understanding of programming. We explore the
specification of relaxed or weak memory models, meaning that these models ac-
commodate optimizations that are precluded under sequential consistency. We are
inspired by Go, an open-source programming language developed at Google that
has gained traction in the area of cloud computing. Like in Go, we focus on the
exchange of messages via channels as the primary means of synchronization.

On a theoretical level, we present the specification of a relatively relaxed model
in which writes are delayed. We show two important properties that apply in this set-
ting: the absence of out-of-thin-air behavior (OOTA), and the presence of the DRF-
SC guarantee, which states that Data-Race Free (DRF) programs behave Sequen-
tially Consistently (SC). We explore mechanisms for extending this initial memory
model in support of load buffering, and discuss challenges encountered along the
way.

In addition to weak memory, we visit the issue of correctness of multi-threaded
applications. Specifically, we investigate the detection of data races in programs
that synchronize via channel communication. To that end, we introduce a data-race
detector based on what we call happens-before sets.

We contrasted our operational semantics and data-race detector specifications
against the Go implementation. As a result, we found a discrepancy between the
Go implementation and its memory model specification—this mismatch led to the
under-reporting of data races in Go programs. Our theoretical investigation guided
us to a solution (i.e., a patch) that has been merged and released with Go 1.16. In
this thesis, we share our experience applying formal methods to real-world software.

iii

Contents

Abstract iii

Preface vii
Publications . viii
Acknowledgments . ix

1 Introduction 1
1.1 A bird’s eye view of the history of parallelism 2
1.2 Memory models . 5
1.3 The goals of this thesis . 8
1.4 Thesis outline . 10

2 Operational Semantics of a Weak Memory Model
with Channel Synchronization 13
2.1 Introduction . 13
2.2 Background . 15
2.3 Abstract syntax . 19
2.4 Strong operational semantics . 21
2.5 Weak operational semantics . 27
2.6 Relating the strong and the weak semantics 36
2.7 Implementation . 42
2.8 Discussion . 44
2.9 Limitations and future work . 50
2.10 Related work . 51
2.11 Conclusion . 52

3 Data-race detection and the Go language 53
3.1 Introduction . 53
3.2 Background . 55
3.3 Data-race detection . 59
3.4 Efficient data-race detection . 70
3.5 Comparison with vector-clock based race detection 75
3.6 Connections with trace theory . 81
3.7 Related work . 87
3.8 Conclusion . 89

v

vi

4 Finding and fixing a mismatch between the Go memory model
and data-race detector 91
4.1 Introduction . 91
4.2 Synchronization via channel communication 92
4.3 The Go memory model: Every word counts 94
4.4 The Go data-race detector . 96
4.5 The fix: capturing the semantics of channels 100
4.6 Lessons learned . 105
4.7 Conclusion . 107

5 Incorporating load buffering into the memory model 109
5.1 Introduction . 109
5.2 Delaying reads in a setting without conditionals 110
5.3 Delaying reads in a setting with conditionals 122
5.4 Channels and other considerations 130
5.5 Conclusion . 131

6 Conclusion and extensions 133
6.1 Data-race detection . 133
6.2 Model checking and predictive data-race detection 134
6.3 Bridging the gap between concurrency and distribution 135

A Appendix 137
A.1 The weak semantics simulates the strong 137
A.2 Proofs via a weak semantics augmented with read and write events . 138

Bibliography 147

Preface

As cliché as it sounds, the story of my PhD started in my childhood. Growing up,
I wanted to be a scientist. In my teenage years, I had my eyes on a joint math and
physics program1 at the Universidade Estadual de Campinas (UNICAMP), Brazil.
I started the program in 2001 and still remember Professor Alcibíades Rigas class
on linear algebra and analytical geometry. Rigas used a graduate level book written
in English as the main resource for this freshman level course—in a country where
most don’t speak English. It’s an understatement to say that the class was hard.
But rather than an exercise in gratuitous punishment, Rigas helped us build a solid
foundation. I fell in love with the campus and the program, but I left midway through
my freshman year. While taking entrance exams in Brazil, I had also submitted
applications for college in the US. When notified of my acceptance at the Rochester
Institute of Technology, I chose the unknown over a life I had been falling in love
with.

Moving to the US was a momentous decision for me. Leaving a liberal, public
(free) university that is strong in theory and the sciences and going to a paid, conser-
vative school with a focus on industrial application... had I made a big mistake? The
feeling of isolation, the cold, and the political climate post 9/11 weighed hard. But
I also made life-long friends during this time, and learned to embraced the engineer
in me. In the end, RIT did prepare us well for industry. After college, I worked at
Intel on one of the first many-core CPU architectures. At Apple, I worked on the
first 64-bit cellphone processor to hit the market. But my childhood dream of being
a scientist looked far away in the rear-view mirror. So on the verge of becoming a
father, with the encouragement and support of my wife, I took an order of magnitude
pay-cut and made a u-turn into graduate school.

I enrolled in the PhD program in Computer Science at the University of Cal-
ifornia in Santa Cruz, CA. Wanting to find my way back to math and science, I
took classes in machine learning and in the theory of programming languages. I
became interested in logic and was exposed to formal methods. But I struggled to
find my footing, and life in the US was not easy for two graduate students with a
kid. With the help of the Good Country Index,2 I made a list of potential places to
live. A serendipitous e-mail from Olaf (now my PhD co-advisor) and the support
from amazing friends put us in motion towards Norway.

At the University of Oslo, I continued studying programming languages and
formal methods. In this thesis you may sense the pushes and pull of a person with
mixed interests. The operational semantics and the proof by simulation that appear
early in the document come from wanting to deepen my mathematical background.

1The program was known as cursão or Curso 51, and the idea of combining the subject seemed, like
Caninha 51, uma boa ideia.

2https://index.goodcountry.org/

vii

https://index.goodcountry.org/

viii

The work of manipulating symbols in a formal system, however, is more fitting to
a theoretician than to the engineer who I had become. So I am grateful to Martin,
my advisor, for taking my interest and curiosity seriously, for encouraging me to
develop my own research style, and for helping me bridge my knowledge gap.

I also wanted to build a modest trail, starting with real world source code and
veering towards math. A trail that someone like my past self—a programmer who
aspires to learn more but who does not yet have graduate-level training—might find
useful. With the goal of bringing the thesis’ work to practice, I began looking at
source code again. My exposure to industrial code bases and my experience dealing
its complexities helped me a lot. I studied the thread sanitizer library (TSan), the
Go data race detector, and the implementation of channels in the Go runtime. What
started as tinkering developed into the latter part of the thesis. In the process I
was exposed to open-source development, which I have been interested in since my
undergraduate studies.

I am tremendously grateful for the journey. Risking opening and finishing with
a cliché: I hope you will find the work interesting. Thank you.

Publications

The contents of this thesis is based on research articles that are published in the fol-
lowing international, peer-reviewed computer science conference proceedings and
journals:

• Finding and fixing a mismatch between the Go memory model and data-race de-
tector. Daniel Fava. In SEFM 2020: Proceedings of the 18th International Con-
ference on Software Engineering and Formal Methods.

• Ready, set, Go! Data-race detection and the Go language. Daniel Fava and Martin
Steffen. Science of Computer Programming, 195:102473, 2020.

• Operational semantics of a weak memory model with channel synchronization.
Daniel Fava, Martin Steffen, and Volker Stolz. Journal of Logial and Algebraic
Methods in Programming, 103:1 – 30, 2019. An extended version of the FM’18
publication with the same title.

• Operational semantics of a weak memory model with channel synchronization.
Daniel Fava, Martin Steffen, and Volker Stolz. In FM 2018: Proceedings of the
22nd International Symposium on Formal Methods, volume 10951, pages 1–19.

I have been involved as a main contributor on each one of these articles, and they
were written in their entirety between 2017 and 2020 for the purpose of supporting
this thesis.

ix

Acknowledgments

I want to thank Martin Steffen, my primary advisor, for sharing with me the seeds
from which I was able to grow this PhD thesis. I also want to thank Olaf Owe, my
secondary advisor, for his kindness and for taking interest in us students, and in our
well-being inside and outside of academia.

I would like to thank Volker Stolz for encouraging my visit to the Universidade
Federal de Campina Grande in 2019, and to thank Tiago Massoni and Rohit Gheyi
for the hospitality. During that same trip, I also had the pleasure of meeting addi-
tional members of the Brazilian formal methods community at the XXII Simpósio
Brasileiro de Métodos Formais in São Paulo.

The story of my PhD is not complete without mentioning my sons. Lucas was
born during my first quarter at the University of California, Santa Cruz, while David
was born a year into my studies at the University of Oslo. Their coming encouraged
me to pursue my childhood dream of becoming a scientist, and to seek a calm,
harmonious setting for our family. Most of all, these guys have added a lot of joy
and play into my life.

I am grateful to be sharing my life’s journey with wife, and I am thankful for
her unwavering support. I would also like to thank my father for always rooting for
me—regardless of my choices and their outcome— and for giving my sister and I an
Intel 80386, even though computers were an uncommon household item at the time.
I would like to thank Renato and Elisabeth for their friendship and for the help and
encouragement when moving to Norway. Finally, I want to thank my colleagues and
the staff at both the University of California, Santa Cruz, as well as at the University
of Oslo, Norway.

I dedicate this book to my mother, my sister, and my wife.

— Daniel S. Fava, Oslo, December 2020.

1Introduction

Everything should be made as simple as possible, but not simpler.

Albert Einstein

It is fascinating when computing systems, which we think of as exact and well
defined, harbor inconsistencies. So many inconsistencies, in fact, that we may no
longer agree on what a program is supposed to do. The programs we will see in this
chapter are only few lines long, yet there will be lots to talk about. This chapter will
give you an appreciation for concurrency; here we discuss issues that you may not
have encountered before. We tackle concurrency and synchronization from the point
of view of channels, where instead of using locks, threads synchronize by sending
each other messages. In this thesis, we formally define a memory model and a
data-race detector based on message passing, and we put our theory in perspective
by relating it to the Go programming language. Here, we go over the question of
what happens when channels are a first-class language construct, as opposed to a
construct derived from lower level primitives.

We start with the following example, where the initial value of z is zero and done
is true. What does this program do?

T 1 T 2
z := 42 if (done)
done :=true print (z)

There are two threads running concurrently, T 1 and T 2, and they are trying to syn-
chronize with each other. T 1 performs a task, represented here by the setting a
shared variable z to 42. T 2 checks if the work is done, and, if so, the thread prints
the value of z.

The answer to “what does this program do” depends on two main factors. One
is interleaving: the order in which instructions from the different threads execute.
For example, T 2 may execute before T 1 sets done to true, in which case nothing
is printed. Alternatively, T 1 may execute before T 2, in which case 42 is printed.
Concurrent systems are challenging, in part, because each interleaving is potentially
associated with a different program outcome, and there can be an immense number
of interleavings (as interleavings grow factorially with the number of threads and
of atomic blocks in each thread). Over the years, we have learned, for example, to
leverage the fact that not all interleavings are visibly different. Two operations may
produce the same result regardless of the order in which they execute—we say that

1

2

these well behaved operations commute. By collapsing interleavings that yield the
same result, we have gained some ground dealing with concurrency.

The other factor affecting a concurrent program’s outcome is the memory
model—“a formal specification of how the memory system will appear to the
programmer” [1]. Going back to our example, even if the branch-guard in T 2
observes the value of done to be true, it does not mean the thread will print 42.
In many execution environments, it is possible for T 2 to still print zero (or some
uninitialized value). So, even when setting interleaving aside and focusing on one
execution, the answer to “what does this program do” is not obvious. Here, we will
explore the origins and consequences of this complexity.

1.1 A bird's eye view of the history of parallelism

Gordon Moore, the co-founder of the semiconductor company Intel, observed that
the number of integrated-circuit components doubles from year to year, roughly. In
the first few decades of computing, these new components have accounted for in-
creases in performance through the exploitation of what is called instruction-level
parallelism (ILP). The idea, which can be traced back to the 1940s [85], involves
speeding-up a single-threaded program by, for example, overlapping the execution
of instructions, or by changing the order in which instructions execute. The ex-
ploitation of instruction-level parallelism has been an integral part of computing. In
fact, decades of research and development towards improving single-threaded per-
formance have left lasting impressions on modern hardware designs.

With time, however, it became increasingly difficult to speed up single-threaded
applications in a power-efficient way. By the mid 2000s, industry was shifting to-
wards exploiting higher levels of parallelism. The new transistors, predicted by
Moore’s law, went into replicating execution units that allow processors to handle
multiple instruction streams at once [88, 95]. This was the beginning of many-core
CPU designs. As a personal anecdote, from 2007 to 2010 I worked on an early
many-core chip code-named Larrabee at Intel [102]—the technology we developed
passed on to a series of x86 many-core processors found in supercomputers today.

As it turns out, however, single-threaded optimizations, which yielded tremen-
dous performance benefits in the past, generate adverse effects in the context of
multi-threading. These adverse effects transcend the scope of hardware: they are a
source of complication for compiler and programming language designers and well
as the application programmer. Next, we illustrate some of these effects on an ex-
ample. First we look at instruction reordering, then we will look at the effects of
memory access reordering.

Instruction reordering. The intuition for instruction reordering comes from the
fact that commuting instructions can be swapped without changing a single-threaded

3

program’s behavior. We can derive alternate programs by swapping adjacent in-
structions that commute,1—although these new programs produce the same results
as the original program, these programs may have different performance character-
istics. In fact, rather than observing the original order of instructions in a program,
performance can be improved by handling instructions according to the availabil-
ity of inputs and the availability of execution units [98]. Instruction reordering is
ordinarily performed statically, by compilers, and dynamically, by processors.

When it comes to multi-threaded programs, it would be natural for us to want to
swap commuting instructions that occur within a thread. Programs derived this way
preserve single-threaded semantics, meaning that each individual thread behaves
“the same” despite these swaps. But what can we say about the behavior of the
program as a whole? If individual threads behave the same, does the whole program
necessarily behaves the same? Unfortunately, the answer is no. It is possible to
preserve single thread semantics while modifying the overall behavior of a program.

Consider the program of Figure 1.1, where r1 and r2 are local variables, and x
and y are shared. After inspection, we may come to the conclusion that, because of

T 1 T 2
x := 1 y := 1
r1 := y r2 := x
print r1 print r2

Figure 1.1: A simple multi-threaded example.

interleaving, the program can produce the following pairs of values for r1 and r2:
(r1,r2) ∈ {(0,1),(1,0),(1,1)}. Note that it is not possible for the pair (0,0) to be
printed because if x is zero at the end, then y should have been set to one, and vice
versa.

Now, based on commutativity, let us swap the first two instructions in T 1 to
obtain a new program, shown in Figure 1.2. The swap is not noticeable from the

T 1 T 2
r1 := y y := 1
x := 1 r2 := x
print r1 print r2

Figure 1.2: A variation on the example of Figure 1.1 that is being used to illustrate
the effects of instruction reordering.

1Here we are talking about commuting instructions within a thread, rather than commuting instruc-
tions between threads.

4

point of view of T 1: before the swap, T 1 could print 0 or 1 and, after the swap,
T 1 can still print 0 or 1. Although single-threaded semantics is preserved, the set
of pairs that the modified program can produce now contains (0,0) in addition to
the values produced by the original program. In summary: individually, T 1 and its
variant behave the same, but as a whole, the original and the modified programs
behave differently.

Memory access reordering. Memory access reordering, like instruction reorder-
ing, is a performance enhancing technique that exploits instruction level parallelism.
The objective is to introduce buffers and caches in order to reduce the latency asso-
ciated with retrieving values from and committing values to memory. Interestingly,
memory access reordering can happen even if the instruction stream is executed in
order.

Similar to instruction reordering/scheduling, memory optimizations can also ad-
versely affect multi-threaded programs. Consider a processor with write-buffering.
In a nutshell, write-buffers are place-holders for values on their way to be commit-
ted to memory. Such buffering allows a processor to continue executing even before
the effects of its writes become visible to other processors. When it comes to the
example in Figure 1.1, it is possible for T 1 and T 2 to deposit their writes into their
respective write buffers, and to proceed executing before these writes trickle out to
memory and become visible from the point of view of the other thread.2 In such an
execution environment, each thread would then observe the value of 0 when reading
from memory, thus producing the pair (0,0). In other words, memory access re-
ordering, like instruction reordering, can introduce novel results to a multithreaded
program—results that cannot be justified by interleaving alone.

The examples above show that the effects of instruction rescheduling, buffering
and of other optimizations that target single-threaded performance are not composi-
tional. While the behavior of each individual thread is preserved, when we compose
these optimized threads into a multi-threaded program, the overall program behavior
changes. Proverbially, the whole is greater than the sum of the parts.

Going back to the example at the very start of the chapter. We have learned that
both instruction reordering and buffering can make it seem like the order of T 1’s
instructions has been reversed—reversed from T 2’s perspective.3 This alteration
makes it possible for T 2 to print an uninitialized value of z instead of printing 42.
This behavior is counterintuitive, even on a tiny program. How can we, then, expect
to make sense of large multithreaded applications?

2The behavior described is possible under the processor consistency memory model.
3In the case of memory reorderings, a total-store-order (TSO) architecture would still preserve the

order of T1’s writes. In order for the instructions in T1 to appear out-of-order from T2’s perspective, we
would need a more aggressive optimization, such as the partial-store-order (PSO) model.

5

1.2 Memory models

A memory model is “a formal specification of how the memory system will appear
to the programmer, eliminating the gap between the behavior expected by the pro-
grammer and the actual behavior supported by a system” [1]. Simply put, a memory
model dictates what values a read operation can return given previous read and write
operations.4 The memory model is a contract between the application programmer
and the compiler/language designer. This contract is responsible for establishing the
semantics of a high-level programming language constructs in a way that is intel-
ligible to the application programmer. The contract imposes obligations on a lan-
guage’s compiler and runtime; namely, the obligation of shielding the application
programmer from the intricacies of the underlying hardware (the effects of buffers
and out-of-order execution) and shielding the programmer from intricacies in the
compiler itself (e.g., compiler optimizations).

Now, consider an execution environment where “the results of any execution is
the same as if the operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in this sequence in the
order specified by its program” [57]. This environment is the execution model of
interleaving: instructions execute in the order they appear within each thread and,
it is only possible to shuffle which thread executes next. Such a forgiving memory
model is called sequentially consistent. Under sequential consistency, we can dis-
regard buffering and instruction reordering, thus making the question of “what does
this program do,” raised previously, much easier to answer.

Although simple to understand, sequential consistency precludes many of the
widely adopted compiler and hardware optimizations in use today. For this rea-
son, sequential consistency is not employed in actual designs and is, instead, a
conceptual base-line—a departing point in the development of more flexible, more
complex models. In fact, for years researchers and developers have explored and
implemented different trade-offs in memory models by: starting with sequential
consistency, relaxing certain ordering constraints, and studying the effect of these
relaxations on performance and intelligibility. As an example, Adve and Ghara-
chorloo [1] list the following design considerations:

• can a write to a variable be delayed after a read from another variable is issued by
the same thread?

• can a write to a variable be delayed after a write to another variable is issued by
the same thread?

• can a read from a variable be delayed after a read from or a write to another
variable is issued by the same thread?

4In the memory model proposed in this thesis, a read is dependent only on previous writes. The
semantics can, therefore, exhibit what is called coRR behavior, which means that consecutive reads can
observe different values even when no new write events have taken place.

6

• can a thread read a write issued by another thread, even before this write has
affected memory?

• can a thread read a write, even before this write has affected memory?

In practice, such questions can have counterintuitive consequences, thus yielding
memory models that are difficult to understand and to describe—or even memory
models that violate design goals [6, 83, 84, 14]. Finding a sweet spot in this design
space, one that leads to performance without sacrificing intelligibility, is the holy
grail.

Another way to understand memory models is to contrast them against other
“features” or “components” of a programming environment. Several features or
components of a programming environment are well encapsulated within their im-
plementation. For example, it is easy to point to files that implement a language’s
parser, or to the files that implement threads and synchronization primitives. The
fact that their implementation is encapsulated makes it easier for us to understand
and verify these components’ behavior. A memory model, however, is not encapsu-
lated. Instead, a memory model’s “implementation” (i.e., its behavior) results from
the collective choices made in different parts of the system; such as the compiler and
its optimizations, the runtime and its handling of asynchronous computations, the
relevant synchronization primitives, and sometimes even the underlying hardware.
As such, a memory model is akin to an emergent property or emergent behavior,
that is: a property of a collective that is not directly accounted for by the sum of
the properties of its individual components. The concept is not often mentioned
in the study of programming languages, computer architecture, or formal methods;
yet, thinking of memory models as an emergent property may help point to new
directions of research.

Given the insight of memory models as an emergent behavior, we are not
surprised to know that, while channels in Go are mostly implemented in the
runtime/chan.go source file, and can thus easily be inspected or tested, we
do not find a “memory model” source file in the Go repository. This lack of
reification makes memory models difficult to understand and verify. When it comes
to verification, current focus has been placed on “testing oriented approaches,”
such as through the creation of litmus tests. Litmus tests are snippets of code
that exemplify the behavior of a memory model, and that stress the distinction
between models. Such approaches allow us, for example, to treat memory models
as black-boxes, thus freeing us from specifying the underlying interconnection
between the disparate components that influence a program’s execution.

Although there is still little consensus on what the right memory model should
be, over the years, we have converged around two principles: (1) the undesirability
of out-of-thin-air behavior and (2) the desire for the execution of “well-behaved”
programs to appear sequentially consistent. We discuss these points next.

7

Out-of-thin-air. Out-of-thin-air (OOTA) are counterintuitive results that emerge
from circular reasoning. One challenge in specifying a programming language’s
memory model is forbidding OOTA behavior without significantly jeopardizing per-
formance.

For example, given the program below, there exists an execution which results in
r1 = r2 = 42. This execution springs from a common feature called load-buffering:
the load of shared variable y in T 2 is buffered, thereby taking effect after the write
to x. Buffering causes the instructions in T 2 to be executed out-of-order from the
point of view of T 1—this reordering can be used to generate alternate executions
that may be more performant than the original program.

T 1 T 2
r1 := x r2 := y
y := r1 x := 42

Now, let us change to the program above so that, as opposed to writing 42 to x,
we write the value of r2:

T 1 T 2
r1 := x r2 := y
y := r1 x := r2

Given this modification, we would like to forbid the possibility of producing r1 =
r2 = 42. The value 42 (or any value other than 0) is, in this case, considered to come
“out-of-thin-air.” Such a value cannot be justified from the program text without the
use of circular reasoning: if y contains 42, then 42 is written to x in T 2, r1 gets set
with the value of 42 in T 1 and so is y, thus justifying the original assumption of y
containing 42.

Hardware forbids such causality cycles. However, compiler optimizations can
compile away dependencies that would otherwise be observed at runtime. The inter-
action between compiler optimizations and hardware relaxations makes it difficult to
precisely define and disallow out-of-thin-air results from a language memory-model
specification.

DRF-SC guarantee. When defining a memory model, there exists a tension
between (1) its flexibility in accounting for compiler and hardware optimizations
(which is related to how much a model relaxes ordering constrains), and (2) the
memory model’s intelligibility from the application programmers point of view,
which accounts for, among other things, the absence of out-of-thin-air behavior.
Regardless of how a memory model balances this tension, the model should abide
by the following principle: if a program is “well-behaved,” then its execution should
appear sequentially consistent.

8

When it comes to multi-threaded programs, the notion of well-behavior is cap-
tured by the concept of data races. Data races—when two threads perform conflict-
ing memory accesses without synchronizing with one another—can lead to coun-
terintuitive behavior that is hard reproduce and debug. Note that two memory ac-
cesses conflict if they involve the same memory location and at least one of the
accesses is a write. It is possible to design memory models such that, if a program
is Data-Race Free (DRF) then its execution behaves Sequentially Consistently (SC).
Memory models that abide by this property are called DRF-SC.

The DRF-SC property is tremendously useful. For one, the property has a “plug-
and-play” effect: a data-race free program is sure have the same set of behaviors un-
der any memory model that supports the DRF-SC guarantee. But most importantly,
DRF-SC allows programmers to think in terms of sequential consistency, provided
their programs are data-race free. This effect is desirable because reasoning under
sequential consistency is much simpler than under relaxed memory.

1.3 The goals of this thesis

Using a powerful and well-known formalism called operational semantics, this
thesis presents a memory model for an interesting and relevant programming
paradigm—that of message passing systems. While memory models have exten-
sively been studied in the context of locks, fences, and barriers (constructs which
can easily be mapped down to ordinary hardware), message passing systems have
arguably received lesser attention. In fact, common misconceptions about message
passing systems is that they do not harbor data races. Indeed, in the Scandinavian
school, objects are agents in a concurrent system, objects have internal memory,
and methods are a communication mechanism on par with message passing. In
this programming style, since agents do not share memory, the concept of data
races is irrelevant.5 Yet, with the advent of the Go programming language, message
passing as a means of synchronization of shared memory systems has gained
traction. With the backing of Google, Go has become prominent in the area of cloud
computing, where it is used in the development of container management systems
such as Kubernetes and Docker. Being the underpinning of vast amounts of virtual
infrastructure, Go’s concurrency model is well worth of theoretical investigation.

Go is influenced by the work of Tony Hoare on Communicating Sequential Pro-
cesses (CSP) [46], and the language’s memory model is rooted in Leslie Lamport’s
the concept of happens-before and his work on message passing and distributed sys-
tems [56, 57]. Although anchored on stable theoretical grounds, there are important
differences that set Go apart. For example, in the referenced works, Lamport was

5Despite the absence of shared memory, agents can still compete when sending/receiving messages
over a channel. These types of races (i.e., channel races) have been widely studied, and their absence is
related to determinism rather than data race freedom [24, 25, 73, 97].

9

studying distributed systems, while Go is a language for concurrency. Both con-
currency and distribution speak of independent agents cooperating on a common
task. For that to happen, agents need to coordinate, to synchronize. Lamport defines
the happens-before relation as a way to talk about the partial order of events occur-
ring in a distributed systems where agents interact solely by exchanging messages.
Although distribution and concurrency share many goals and techniques, these re-
search areas are not the same. In a concurrent system, we assume that the agents are
under a single environment. In Go, for example, all agents (goroutines) are under
the umbrella of the Go runtime. This overarching environment allows us to assume
that no messages are lost during transmission. In distributed system, however, there
is no such point of authority—at least not without making strong assumptions about
the system. As a consequence, in general, network delays are indistinguishable from
node crashes. In a distributed system, communication is no longer perfect, and we
are forced to deal with this fact.

The presence of a central authority (e.g., a language runtime) allows Go to spec-
ify the formation of a happens-before relation between two agents that do not di-
rectly exchange messages! This additional happens-before rule is not present in
the works of Lamport. This additional rule links a receiver and a previous sender
on a channel, thus allowing Go channels to be used as locks. In this thesis, we
explore in detail the effect of this additional rule from both theory and practice. Ul-
timately, by performing a methodical exposition starting from first principles, we
were able to relate a formal language semantics to the implementation of channels
in the Go runtime. By doing so, we show that the Go data-race detector is at odds
with the Go memory model specification. This mismatch springs from the detector
(mis)interpreting channels from the point of view of locks—as opposed to channels
as first-class language constructs. In cooperation with the Go maintainers at Google,
we resolved the issue with a patch that has been merged into the Go sources.

This thesis also contributes to the theory behind memory model specification.
The contemporary research on memory models and data races also does not treat
channels as a first-class construct. Instead, channels are higher level constructs built
from underlying primitives. We depart from this trend and follow Go’s approach
of defining a memory model with message passing as the de facto synchronization
mechanism. We argue that our treatment of message passing has unveiled gaps in
the contemporary literature. For example, on a theoretical level, we show that a
trace-based definition of data races à la Mazurkiewicz [68] does not sit well with
a happens-before based definition of data race; although the two interpretations are
sometimes conflated in the literature.

Besides elevating message passing, we set off to define a memory model oper-
ationally, while most do it axiomatically. Our intuition is that, like hardware, an
operational semantics can be made to naturally preclude out-of-thin-air behavior.

In summary, we set out to:

(Goal A) Propose and evaluate a memory model for message passing systems

10

using an operational semantics as formalism.

(Goal B) Investigate how relaxed the model can be while keeping out-of-thin-air
behavior at bay and while supporting the DRF-SC guarantee—which says that
Data-Race Free executions are Sequentially Consistent.

(Goal C) Relate the theoretical model to its “material” counterpart and source of
inspiration: the Go programming language.

1.4 Thesis outline

Chapter 2 presents a mathematical description of a subset of the Go programming
language.6 The chapter introduces a weak memory model inspired by the Go speci-
fication. Different from many previous memory model formalizations, ours is given
in an operational semantics. We illustrate the proposed semantics’s behavior on
a set of litmus tests: snippets that highlight features of a memory model. To that
end, we highlight similarities and differences between our formalism and that of a
representative axiomatic semantics.

Being operational means our model, like the Go implementation, is executable.
We implemented our operational semantics in K [51, 87], an executable semantics
framework based on rewriting logic. On a practical side, this implementation helped
us work through rough corners in our understanding. We believe the code can also
help the interested reader assimilate the reduction rules in our formalism, and to
explore alternatives by modifying the sources available online [29]. In Chapter 2, we
give the reader a sense of how our implementation in K follows from the operational
semantics.

Also in Chapter 2, we prove that our proposed model abides by the DRF-SC
guarantee. The proof uses a simulation relation [70] to connect (1) a program run-
ning under a sequentially consistent memory model to (2) a run of the program
under our relaxed memory model. Given the desirability of the DRF-SC guarantee,
the proof is consequential. As a side note, the lemmas that support the main proof
have a connection to distributed systems—see, for example, the consensus lemmas 6
and 8 on page 40.

Although a simplifying property, the DRF-SC guarantee puts a tremendous bur-
den on developers: the burden of programming without data races. We tackle syn-
chronization issues in message passing programs in Chapter 3. While synchroniza-
tion has been studied extensively in the context of locks, when it comes to commu-
nication over channels, the topic has received arguably less attention. This thesis
presents a fresh perspective on data-race detection for message passing systems,
thus plugging a hole in the contemporary literature.7

6Chapter 2 is based on the conference paper [33] and its corresponding extension to the journal
article [34]

7Chapter 3 is based on the journal article [35].

11

In Chapter 3, we introduce a data-race detector based on what we call happens-
before sets. We draw comparisons between our approach and that of modern data-
race detectors based on vector clocks. One outcome from this work is the obser-
vation that stale information can accumulate during the execution of a data-race
detector. Given that detectors incur large runtime overheads, our observation is a
first step in addressing the memory footprint associated with data-race detection. In
Chapter 3, we formalize the notion of stale vector-clock entries and conjecture the
advantages of garbage collection in the context of data-race detection. Finally, in
Chapter 3 we expose difficulties in establishing a connection between a happens-
before definition of data races and a trace based definition a la Mazurkiewicz.

While executable like the Go implementation, the terseness of mathematical no-
tation makes our formalism compact and thus more directly relatable to the Go
memory model specification [40]. This ability to bridge high (specification) and
low levels (source code) opens the door for the results introduced in Chapter 4.
Armed with the memory model described in Chapter 2 and a formalization of data
race in the context of message passing (Chapter 3), we turn our attention to Go
source code—particularly, to how the implementation of channels are connected to
the underlying Go data-race detector.8 With that, we were able to unveil a mismatch
between the Go data-race detector and the Go memory model specification. This
mismatch, which evaded skilled developers for six years, prevented the data-race
detector from flagging certain synchronization bugs in Go programs. Resolving this
mismatch translates to improved correctness of software developed using the Go
programming language. Our experience bridging academic research and industrial
application can be summarized with the following maxims:

• models do not have to be right, they have to be useful.

• mind the gap between specification and implementation.

• bad news is good news: leveraging the complementing strengths (and weak-
nesses) in industrial development versus academic research.

In Chapter 4, we distill the above maxims and describe our interaction with the
open-source Go community.

By design, the memory model we describe in Chapter 2 does not support a relax-
ation called load buffering. The absence of load buffering is a simplifying assump-
tion that allowed us to build intuition and to work through a potentially simpler proof
of the DRF-SC guarantee. Having these results as stepping stone, we turn our atten-
tion to load buffering. Incorporating load buffering would bring our formalization
up to par with the Go memory model specification. In Chapter 5, we explore how to
further relax our initial memory model.9 Our initial intuition was that an operational

8Chapter 4 is based on the conference paper [30].
9Chapter 5 is based on [32] and on unpublished work.

12

semantics, like hardware, can be made to avoid out-of-thin-air (OOTA) and still be
relaxed. We started by studying the effects of read-delay on a language with just
reads and writes. In this simplified scenario, circularity also comes into play, but: as
opposed to leading to OOTA behavior (like in axiomatic semantics), circularity led
to dead- and live-locks—even for programs that terminate under sequential consis-
tency. Next, we explored mixing conditional branching and delayed reads. In this
more realistic scenario, our operational semantics also suffered from OOTA behav-
ior. Resolving these issues remain an open area of research, as well as attempting
to prove the DRF-SC guarantee for the operational version a relaxed memory model
with read delays.

We conclude, in Chapter 6, with a discussion potential extensions to the work
towards (Sec. 6.1) data-race detection, (Sec. 6.2) model checking and predictive
data-race detection, and (Sec. 6.3) distribution.

2Operational Semantics of a
Weak Memory Model with
Channel Synchronization

There exists a multitude of weak memory models supporting various types of re-
laxations and synchronization primitives. On one hand, such models must be lax
enough to account for hardware and compiler optimizations; on the other, the more
lax the model, the harder it is to understand and program for. Though the right bal-
ance is up for debate, a memory model should provide what is known as the DRF-SC
guarantee, meaning that data-race free programs behave in a sequentially consistent
manner.

We present a weak memory model for a calculus inspired by the Go program-
ming language. Thus, different from previous approaches, we focus on buffered
channel communication as the sole synchronization primitive. Our formalization is
operational, which allows us to prove the DRF-SC guarantee using a standard simu-
lation technique. Contrasting against an axiomatic semantics, where the notion of a
program is abstracted away as a graph with memory events as nodes, we believe our
operational semantics and simulation proof can be clearer and easier to understand.
Finally, we provide a concrete implementation in K, a rewrite-based executable se-
mantic framework, and derive an interpreter for the proposed language.

2.1 Introduction

A memory model dictates which values may be observed when reading from mem-
ory, thereby affecting how concurrent processes communicate through shared mem-
ory. One of the simplest memory models, called sequentially consistent, stipulates
that operations must appear to execute one at a time and in program order [57].
SC was one of the first formalizations to be proposed and, to this day, constitutes a
baseline for well-behaved memory. However, for efficiency reasons, modern hard-
ware architectures do not guarantee sequential consistency. SC is also considered
much too strong to serve as the underlying memory semantics of programming lan-
guages; the reason is that sequential consistency prevents many established compiler
optimizations and robs from the compiler writer the chance to exploit the underly-
ing hardware for efficient parallel execution. The research community, however,
has not been able to agree on exactly what a proper memory model should offer.
Consequently, a bewildering array of weak or relaxed memory models have been
proposed, investigated, and implemented. Different taxonomies and catalogs of so-

13

14

called litmus tests, which highlight specific aspects of memory models, have also
been researched [1].

Memory models are often defined axiomatically, meaning via a set of rules that
constrain the order in which memory events are allowed to occur. The candidate
execution approach falls in this category [9]. The problem with this approach, how-
ever, is that either the model excludes too much “good” behavior (i.e., behavior that
is deemed desirable) or it fails to filter out some “bad” behavior [9]. Out-of-thin-air
is a common class of undesired behavior that often plagues weak memory speci-
fications. Out-of-thin-air are results that can be justified by the model via circular
reasoning but that do not appear in the actual executions of a program [16]. In light
of these difficulties and despite many attempts, there are no well-accepted compre-
hensive specification of the C++11 [11, 15] and Java memory models [6, 64, 83].

More recently, one fundamental principle of relaxed memory has emerged: no
matter how much relaxation is permitted by a memory model, if a program is data-
race free or properly synchronized, then the program must behave in a sequentially
consistent manner [2, 64]. This is known as the DRF-SC guarantee. DRF-SC allows
for a write-it-once run-it-anywhere guarantee, meaning that data-race-free code be-
haves equally across memory models that provide the guarantee, regardless of which
relaxations are supported in the underlying model.

We present an operational semantics for a weak memory. Similar to Boudol and
Petri [17], we favor an operational semantics because it allows us to prove the DRF-
SC guarantee using a standard simulation technique. The lemmas we build up in the
process of constructing the proof highlight meaningful invariants and give insight
into the workings of the memory model. We think that our formalism leads to an
easier to understand proof of the DRF-SC guarantee when compared to axiomatic
semantics. Our belief is based on the following observation: the notion of program
is preserved in an operational semantics, while in axiomatic semantics, a program is
often abstracted into a graph with nodes as memory events.

Our calculus is inspired by the Go programming language: similar to Go, our
model focuses on channel communication as the main synchronization primitive.
Go’s memory model [40], however, is described, albeit succinctly and precisely, in
prose. We provide a formal semantics instead.

The main contributions of our work therefore are:

• Few studies focus on channel communication as synchronization primitive for
weak memory. We give an operational theory for a weak memory with bounded
channel communication.

• Using a standard conditional simulation proof, we prove that the proposed mem-
ory upholds the sequential consistency guarantee for data-race free programs.

• We implement the operational semantics in the K executable semantics frame-
work [51, 87] and make the source code publicly available [29]. Here, we provide
a detailed description of the K implementation and walk through a rewriting rule

15

to give the reader a sense of how the implementation follows from the operational
semantics.

• We add a discussion section illustrating the proposed semantics’s behavior on
litmus tests. Here we revisit concepts from the axiomatic semantics of memory
models in order to highlight similarities and differences between our semantics
and a representative axiomatic semantics.

The remaining of the chapter is organized as follows. Section 2.2 presents back-
ground information directly related to the formalization of our memory model. Sec-
tions 2.3, 2.4 and 2.5 provide the syntax and the semantics of the calculus with
shared relaxed memory and channel communication. Section 2.6 establishes the
DRF-SC guarantee. This is done via a simulation proof that relates a standard
“strong” semantics (which guarantees sequential consistency) to the weak seman-
tics. The proof makes use of an auxiliary semantics detailed in the appendix. Sec-
tion 2.7 discusses the implementation of the strong and the weak semantics in K.
With the goal of contrasting and positioning our work at a wider context, Section 2.8
illustrates the behavior of the proposed memory model on litmus tests. Section 2.9
addresses the model’s limitations. Sections 2.10 and 2.11 conclude with related and
future work.

2.2 Background

In this section we provide background on the proposed memory model. Its semantics
and properties will be covered more formally in the later sections.

Go’s memory model The Go language [39, 28] recently gained traction in net-
working applications, web servers, distributed software and the like. It prominently
features goroutines, which are asynchronous functions resembling lightweight
threads, and buffered channel communication in the tradition of CSP [46] (resp. the
π-calculus [71]) or Occam [50]. While encouraging message passing as the prime
mechanism for communication and synchronization, threads can still exchange data
via shared variables. Consequently, Go’s specification includes a memory model
which spells out, in precise but informal English, the few rules governing memory
interaction at the language level [40].

Concerning synchronization primitives, the model covers goroutine creation and
destruction, channel communication, locks, and the once-statement. Our seman-
tics will concentrate on thread creation and channel communication because lock-
handling and the once statement are not language primitives but part of the sync-
library. Thread destruction, i.e., termination, comes with no guarantees concerning
visibility: it involves no synchronization and thus the semantics does not treat thread

16

termination in any special way. In that sense, our semantics treats all of the primi-
tives covered by Go’s memory model specification. As will become clear in the next
sections, our semantics does not, however, relax read events. Therefore, our mem-
ory model is stronger than Go’s. On the plus side, the lack of relaxed read events
prevents a class of undesirable behavior called out-of-thin-air [16]. On the negative,
this absence comes at the expense of some forms of compiler optimizations.

Languages like Java and C++ go to great lengths not only to offer the DRF-SC
guarantee, but beyond that, strive to clarify the non-SC behavior of ill-synchronized
programs. It is far from trivial, however, to attribute a “reasonable” semantics to
racy programs. In particular, it is hard to rule out the so called out-of-thin-air behav-
ior [16] without inadvertently restricting important memory relaxations. Intuitively,
one can think of out-of-thin-air as a class of behavior that can be justified via some
sort of circular reasoning. However, according to Pichon-Pharabod and Sewell [79],
there is no exact, generally accepted definition for out-of-thin-air behavior. Doubts
have also been cast upon a general style of defining weak memory models. For in-
stance, Batty et al. [9] point out limitations of the so-called candidate of execution
way of defining weak memory models, whereby first possible executions are de-
fined by way of ordering constraints, where afterwards, illegal ones are filtered out.
In such formalizations, the distinction between “good,” i.e., expected behavior, and
“bad,” i.e., outlawed behavior, is usually illustrated by a list of examples or litmus
tests. The problem is that there exist different programs in the C/C++11-semantics
with the same candidate executions, yet their resulting execution is deemed accept-
able for some programs and unacceptable for others [9]. In contrast, Go’s memory
model is rather “laid back.” Its specification [40] does not even mention “out-of-
thin-air” behavior. In that sense, Go has a catch-fire semantics, meaning that the
behavior of racy programs is not defined.

Happens-before relation and observability Like Java’s [64, 83], C++11’s [11,
15], and many other memory models, ours centers around the definition of a
happens-before relation. The concept dates back to 1978 [56] and was introduced
in a pure message-passing setting, i.e., without shared variables.1 The relation is a
technical vehicle for defining the semantics of memory models.

It is important to note that just because an instruction or event is in a happens-
before relation with a second one, it does not necessarily mean that the first instruc-
tion actually “happens” before the second in the operational semantics. Consider
the sequence of assignments x := 1;y := 2 as an example. The first assignment
“happens-before” the second as they are in program order, but it does not mean the
first instruction is actually “done” before the second,2 and especially, it does not
mean that the effect of the two writes become observable in the given order. For

1The relation was called happened-before in the original paper.
2Assuming that x and y are not aliases in the sense that they refer to the same or “overlapping”

memory locations.

17

example, a compiler might choose to change the order of the two instructions. Al-
ternatively, a processor may rearrange memory instructions so that their effect may
not be visible in program order. Conversely, the fact that two events happen to occur
one after the other in a particular schedule does not imply that they are in happens-
before relationship, as the observed order may have been coincidental.

To avoid confusion between the technical happens-before relation and our under-
standing of what happens when the programs runs, we speak of event e1 “happens-
before” e2 in reference to the technical definition (abbreviated e1→hb e2) as opposed
to its natural language interpretation. Also, when speaking about steps and events
in the operational semantics, we avoid talking about something happening before
something else, and rather say that a step or transition “occurs” in a particular order.

The happens-before relation regulates observability, and it does so very liberally.
It allows a read r from a shared variable to possibly observe a particular write w to
said variable unless one of the following two conditions hold:

r→hb w or (2.1)
w→hb w′→hb r for some other write w′ to the same variable. (2.2)

There is no memory hierarchy through which write events propagate; there are no
buffers or caches that need to be flushed. Visibility of a write event is enabled
globally and immediately. The only writes that are not visible are writes that happen-
after a read as detailed in condition (2.1), and writes w that have been supplanted
or shadowed by a more recent write w′ as detailed in condition (2.2). We call the
knowledge of a write event as positive information and the knowledge that a write
has been shadowed as negative information.

Although knowledge of write events (i.e., positive information) is available glob-
ally and immediately, we will see next that knowledge of shadowed events, or nega-
tive information, is local. The exchange of this negative information is what allows
for synchronization. For the sake of discussion, let us concentrate on the following
two constituents for the happens-before relation: 1) program order and 2) the order
stemming from channel communication.3 According to the Go memory model [40],
we have the following constraints related to a channel c with capacity k:

A send on c happens-before the corresponding receive from c completes. (2.3)
The ith receive from c happens-before the (i+ k)th send on c. (2.4)

To illustrate how the happens-before and channel communication can be used when
reasoning about program behavior, consider the following example.

Example 1 (Synchronization via channel communication). Listing 2.1 shows the
spawning and asynchronous execution of a setup function, which then runs con-
currently with main. The thread executing setup writes to the shared variable a,

3There are additional conditions in connection with channel creation and thread creation, the latter
basically a generalization of program order; we ignore it in the discussion here.

18

Listing (2.1)
Failed sync. [40]

1 var a string
2 var done bool
3
4 func setup () {
5 a = " hello world"
6 done = true
7 }
8
9 func main() {

10 go setup ()
11 for !done {} // try wait
12
13
14 print (a)
15 }

Listing (2.2)
Channel sync. [40]

var a string
var c = make(chan int, 2)

func setup () {
a = " hello world"
c <− 0 // send

}

func main() {
go setup ()
<−c // receive

print (a)
}

Listing (2.3)
Sync. via channel capacity

var a string
var c = make(chan int, 2)

func setup () {
a = " hello world"
<−c // receive

}

func main() {
go setup ()
c <− 1 // send
c <− 2 // send
c <− 3 // send
print (a)

}

Figure 2.1: Synchronization via channel communication

thereby shadowing its initial value from the perspective of setup’s. This means,
after being overwritten by the hello world string, the variable’s initial value is
no longer accessible for that particular thread. The shadowing here accounts for
condition 2.2. In the setup thread, the write to variable a happens-before the write
to done, as they are in program order. For the same reason, the read(s) of done
happen-before the read of a in the main thread. Without synchronization, the vari-
able accesses are ordered locally per thread but not across threads. Since neither
condition (2.1) or (2.2) applies, the main procedure may or may not observe writes
performed by setup. Thus, it is possible for main to observe the initial value of a as
well as its updated value. Such ambiguity in observation is what allows the writes
to a and done performed by setup to potentially appear out-of-order from the main
thread’s perspective. This example illustrates how shadow information (i.e., nega-
tive information) is thread-local: only setup is in a happens-before relation with
the write of hello world to a, and only setup is unable to observe 0.

Replacing the use of done by channel communication properly synchronizes the
two functions (cf. Listing 2.2). As the receive happens-after the send, an order is
established between events belonging to the two threads. One can think of the main
thread as receiving not only a value but also the knowledge that the write event to a
in setup has taken place. With condition (2.3), channels implicitly communicate the
happens-before relation from the sender to the receiver. Then, with condition (2.2),
we can conclude that once the main thread receives a message from setup, the
initial value of a is no longer observable from main’s perspective.

The previous example shows how condition (2.3) can be used to synchronize
a program; namely, using the fact that a message carries not only a value but also
happens-before information from a sender to its corresponding receiver. There exists

19

yet another form of synchronization, formulated in condition (2.4), which hinges
on a channel’s bounded capacity. This synchronization comes from the fact that
a sender is only allowed to deposit a message into a bounded channel when the
channel is not full. The boundedness of a channel, therefore, relates a sender to
some previous receiver who, by reading from the channel, created an empty slot
onto which the sender can deposit its message. Happens-before information, in this
case, flows backwards: from some receiver to a later sender.

Example 2 (Synchronization via channel capacity). Listing 2.3 shows a modifica-
tion to the synchronization example where, as opposed to sending a message when
the shared variable is modified, the setup thread receives a message. Note that
information flows backwards: the fact that the message is received implicitly com-
municates information back to the message’s sender. The sender, in this case main,
uses the limited channel capacity to its advantage: it sends three messages on a
channel of capacity two; the third message can only be successfully deposited onto
the channel once the setup thread receives from the channel (until then the third
send will block). Therefore, the main thread can infer that, when the third message
is sent, the receive at setup has completed, which in turn means that the shared
variable has been initialized.

Note that for synchronous channels, which have capacity zero, conditions (2.3)
and (2.4) degenerate: the send and receiving threads participate in the rendezvous
and symmetrically exchange their happens-before information.

In summary, the operational semantics captures the following principles:

Immediate positive information: a write is globally observable instantaneously.

Delayed negative information: in contrast, negative information overwriting pre-
viously observable writes is not immediately effective. Referring back to the
example of Figure 2.1, the fact that setup has overwritten the initial value of
variable a is not immediately available to other threads. Instead, the information
is spread via message passing in the following way:

Causality: information regarding condition (2.3) travels with data through chan-
nels.

Channel capacity: backward channels are used to account for condition (2.4).

Local view: Each thread maintains a local view on the happens-before relationship
of past write events, i.e., which events are unobservable. Thus, the semantics does
not offer multi-copy atomicity [21].

2.3 Abstract syntax

The abstract syntax of the calculus is given in Figure 2.2. Values v can be of two
forms: r is used to denote the value of local variables or registers, while n in used to

20

denote references or names in general and, in specific, p for processes or goroutines,
m for memory events, and c for channel names. We do not explicitly list values such
as the unit value, booleans, integers, etc. We also omit compound local expressions
like r1 + r2.

Shared variables are denoted by x, z etc, load z represents reading the shared
variable z into the thread, and z := v denotes writing to z. Unlike in the concrete
Go surface syntax, our chosen syntax for reading global variables makes the shared
memory access explicit. Specifically, global variables z, unlike local variables r, are
not expressions on their own. They can be used only in connection with loading from
or storing to shared memory. Expressions like x←load z or x← z are disallowed.
Therefore, the languages obeys a form of at-most-once restriction [5], where each
elementary expression contains at most one memory access.

References are dynamically created and are, therefore, part of the run-time syn-
tax. Run-time syntax is highlighted in the grammar with an underline as in n. A
new channel is created by make (chan T,v), where T represents the type of values
carried by the channel and v a non-negative integer specifying the channel’s capac-
ity. Sending a value over a channel and receiving a value as input from a channel
are written respectively as v1← v2 and← v. After the operation close, no further
values can be sent on the specified channel. Attempting to send values on a closed
channel leads to a panic.

Starting a new asynchronous activity, called goroutine in Go, is done using the
go-keyword. In Go, the go-statement is applied to function calls only. We omit
function calls, asynchronous or otherwise, since they are orthogonal to the mem-
ory model’s formalization. See Steffen [94] for an operational semantics dealing
with goroutines and closures in a purely functional setting, that is, without shared
memory.

The select-statement, here written using the ∑-symbol, consists of a finite set
of branches which are called communication clauses by the Go specification [39].
These branches act as guarded threads. General expressions in Go can serve as
guards. Our calculus, however, imposes the restriction that only communication
statements (i.e., channel sending and receiving) and the default-keyword can serve
as guards. This restriction is in line with the A-normal form representation [89]
and does not impose any actual reduction in expressivity. Both in Go and in our
formalization, at most one branch is guarded by default in each select-statement.
The same channel can be mentioned in more than one guard. “Mixed choices” [77,
78] are also allowed, meaning that sending- and receiving-guards can both be used
in the same select-statement. We use stop as syntactic sugar for the empty select
statement; it represents a permanently blocked thread, see Figure 2.3. The stop-
thread is also the only way to syntactically “terminate” a thread, meaning that it is
the only element of t without syntactic sub-terms.

The let-construct let r = e in t combines sequential composition and the use
of scopes for local variables r: after evaluating e, the rest t is evaluated where the

21

resulting value of e is handed over using r. The let-construct is seen as a binder for
variable r in t. When r does not occur free in t, let then boils down to sequential
composition and, therefore, is replaced by a semicolon; see Figure 2.3.

v ::= r | n values
e ::= t | v | load z | z := v | if v then t else t | go t expressions

| make (chan T,v) | ← v | v← v | close v
g ::= v← v | ← v | default guards
t ::= let r = e in t | ∑i let ri = gi in ti threads

Figure 2.2: Abstract syntax

e; t ::= let r = e in t when r /∈ fn(t)
stop ::= ∑0

Figure 2.3: Syntactic sugar

2.4 Strong operational semantics

Before introducing the main contribution, we discuss a sequentially consistent se-
mantics for the calculus. It is a stripped down version of the weak one and serves
as a stepping stone into the relaxed memory model presented in Section 2.5. Sec-
ondly, the strong semantics will later be used in the DRF-SC proof of Section 2.6,
where we establish that the sequentially semantics conditionally simulates the weak
one. We start by fixing the run-time configurations of a program before giving the
operational rules in Sections 2.4.2 and 2.4.3.

2.4.1 Configurations

Let X be a set of shared variables such as x, z . . . A run-time configuration is given
by the following syntax:

S ::= p⟨t⟩ | (|z:=v|) | • | S ∥ S | c[q] | νn S . (2.5)

where p, m, c, and n are drawn from an infinite set of names or identifiers N. As
mentioned earlier, for readability, we will typically use p, p′1 . . . for goroutines or
processes, c, c1, . . . for channels, and n,n1, . . . for names in general (where the object
being name is of no particular relevance).

22

Configurations, therefore, consist of the parallel composition of goroutines p⟨t⟩
where t is the code to be executed, write events (|z:=v|) where variable z takes value
v, and channels c[q] where q is a queue. The symbols • stands for the empty config-
uration. The ν-binder, known from the π-calculus, indicates dynamic scoping [71].

The strongly consistent semantics is a standard interleaving semantics, which
means that reads and writes immediately interact with a shared global state. Later
we will see that, in the case of the weak semantics, memory events are labeled and
goroutines hold thread-local information.

There is only one goroutine, which we refer to as “main,” at the beginning of
execution. Also, no channels have been created yet and each shared variable in the
program is initialized to a known value. Thus, an initial configuration takes the
following form.

Definition 1 (Initial configuration). Initially, a strong configuration is of the form
p⟨t0⟩ ∥ (|z0:=v1|) ∥ . . . ∥ (|zk:=vk|), where z0, . . .zk are all shared variables of the
program and t0 contains no run-time syntax.

The initial configuration evolves according to operational semantic rules. The
rules are given in several stages. We start with local steps, that is, steps not involving
shared variables.

2.4.2 Local steps

The reduction steps are given modulo structural congruence ≡ on configurations.
The congruence rules are standard and given in Figure 2.4. Besides specifying par-
allel composition as a binary operator of an Abelian monoid and with • as neutral
element, there are two additional rules dealing with the ν-binders. They are likewise
standard and correspond to the treatment of name creation in the π-calculus [71].

P1 ∥ P2 ≡ P2 ∥ P1
(P1 ∥ P2) ∥ P3 ≡ P1 ∥ (P2 ∥ P3)

• ∥ P ≡ P
P1 ∥ νn P2 ≡ νn (P1 ∥ P2) if n /∈ fn(P1)
νn1 νn2 P ≡ νn2 νn1 P

Figure 2.4: Structural congruence

Reduction modulo congruence and other “structural” rules are given in Fig-
ure 2.5. There are two basic reduction steps ⇝ and −→. Local steps ⇝ reduce a
thread t without touching shared variables; see Figure 2.6. Global steps are given in
the next section.

23

P≡ P1 P1 −→ P2 P2 ≡ P′

P−→ P′

P1 −→ P′1

P1 ∥ P2 −→ P′1 ∥ P2

P−→ P′

νn P−→ νn P′

Figure 2.5: Congruence and reduction

let x = v in t⇝ t[v/x] R-RED

let x1 = (let x2 = e in t1) in t2⇝let x2 = e in (let x1 = t1 in t2) R-LET

if true then t1 else t2⇝ t1 R-COND1

if false then t1 else t2⇝ t2 R-COND2

Figure 2.6: Operational semantics: Local steps

2.4.3 Global steps

To differentiate the strong global steps introduced here from the weak global ones
introduce in Section 2.5, we use a subscript s in the strong semantics rules. For
example R-WRITEs versus R-WRITE.

2.4.3.1 Reads and writes to shared memory

As mentioned previously, in the sequentially consistent semantics, reads and writes
to memory take effect immediately. Writes simply update the value associated its
corresponding variable, and reads obtained that value; see Figure 2.7. Since the ini-

R-WRITEs
p⟨z := v; t⟩ ∥ (|z:=v′|)−→ p⟨t⟩ ∥ (|z:=v|)

R-READs
p⟨let r = load z in t⟩ ∥ (|z:=v|)−→ p⟨let r = v in t⟩ ∥ (|z:=v|)

Figure 2.7: Strong operational semantics: read and write steps

tial configuration has one write event per shared variable, and since write events are
not created or destroyed by any of the reduction steps, the following is an invariant
of the semantics.

24

Definition 2 (Well-formed strong configuration). An strong configuration S is well-
formed if, for every variable z ∈Vs, there exists exactly one write event (|z:=v|) in S.
We write ⊢s S : ok for such well-formed configurations.

2.4.3.2 Channel communication

Channels in Go are the primary mechanism for communication and synchronization.
They are typed and assure FIFO communication from a sender to a receiver sharing
the channel’s reference. In Go, the type system can be used to actually distinguish
“read-only” and “write-only” usages of channels, i.e., usages of channels where
only receiving (resp. sending) is allowed. Very few restrictions are imposed on the
types of channels. Data that can be sent over channels include channels themselves
(more precisely references to channels) and closures, including closures involving
higher-order functions. Channels can be dynamically created and closed. Channels
are bounded, i.e., each channel has a finite capacity fixed upon creation. Channels
of capacity 0 are called synchronous.

We largely ignore that channel values are typed and that only values of an ap-
propriate type can be communicated over a given channel. We also ignore the dis-
tinction between read-only and write-only channels.

q = [σ⊥, . . . ,σ⊥] |q |= v fresh(c)
R-MAKEs

p⟨let r = make (chan T,v) in t⟩ −→ νc (p⟨let r = c in t⟩ ∥ c f [] ∥ cb[q])

¬closed(c f [q2])
R-SENDs

cb[q1 :: σ⊥] ∥ p⟨c← v; t⟩ ∥ c f [q2] −→ cb[q1] ∥ p⟨t⟩ ∥ c f [v :: q2]

v ̸=⊥
R-RECs

cb[q1] ∥ p⟨let r =← c in t⟩ ∥ c f [q2 :: v] −→
cb[σ⊥ :: q1] ∥ p⟨let r = v in t⟩ ∥ c f [q2]

R-REC⊥s
p⟨let r =← c in t⟩ ∥ c f [⊥] −→ p⟨let r =⊥ in t⟩ ∥ c f [⊥]

R-RENDs
cb[] ∥ p1⟨c← v; t⟩ ∥ p2⟨let r =← c in t2⟩ ∥ c f [] −→
cb[] ∥ p1⟨t⟩ ∥ p2⟨let r = v in t2⟩ ∥ c f []

¬closed(c f [q])
R-CLOSEs

p⟨close (c); t⟩ ∥ c f [q] −→ p⟨t⟩ ∥ c f [⊥ :: q]

Figure 2.8: Strong operational semantics: channel communication

25

In our semantics (see Fig. 2.8), a channel c is composed of two queues: the for-
ward queue c f [q] and the backward queue cb[q]. When a channel of capacity k is cre-
ated, the forward queue is empty and the backward queue is initialized so that it con-
tains dummy elements σ⊥ (cf. rule R-MAKEs). The dummy elements represent the
number of empty or free slots in the channel. Upon creation, the number of dummy
elements equals the capacity of the channel. Values sent on (resp. received from)
a channel are stored in (resp. removed from) the forward queue; see rule R-SENDs
and R-RECs. When a message is sent on (resp. removed from) the channel, the
number of dummy elements in the backward queue is decremented (resp. incre-
mented). Closing a channel resembles sending a special end-of-transmission value
⊥; see rule R-CLOSEs.

Starting from an initial weak configuration, the semantics assures the following
invariant.

Lemma 1 (Invariant for channel queues). The following global invariant holds for
a channel c created with capacity k:

|q f |+ |qb |= k when c is open and |q f |+ |qb |= k+1 when closed.

In the case of synchronous channels, the invariant boils down to q f = qb = [] for
open channels and q f = [⊥] and qb = [] for closed ones.

Channels can be closed, after which no new values can be sent otherwise a panic
ensues (panics are a form of exception in Go). Values “on transit” in a channel when
it is being closed are not discarded and can be received as normal. Note that a close
operation takes immediate effect regardless of whether the channel is full or not.
After the last sent value has been received from a closed channel, it is still possible
to receive “further values.” As opposed to blocking, a receive on a closed channel
returns the default value of the type T , where T is the type passed to make when
creating the channel. Note that in Go, each type has a well-defined default value.
In order to help the receiver disambiguate between 1) receiving a default value on
a closed channel and 2) receiving a properly communicated value on a non-closed
channel, Go offers the possibility to check whether a channel is closed by using
so-called special forms of assignment. Performing this check is a good defensive
programming pattern, although it is not enforced in Go. Instead of using this “in-
band signaling” of default values and special forms of assignments, we use a special
value ⊥ designating end-of-transmission. Once a channel is closed and the “value“
⊥ is placed in the forward queue, it can be no longer be removed. Therefore, clients
attempting to receive from the closed channel receive the ⊥ marker. Note that a
difference exists between an empty open channel c[] and an empty closed one c[⊥].
Note that the value ⊥ is pertinent to the forward channel only.

26

2.4.3.3 Thread creation and select statement

The thread creation rule, presented in Figure 2.9, is unsurprising: the newly spawned
thread executes the code t ′ passed to the corresponding go statement.

fresh(p2)
R-GOs

p1⟨go t ′; t⟩ −→ ν p2 (p1⟨t⟩ ∥ p2⟨t ′⟩)

Figure 2.9: Strong operational semantics: thread creation

The treatment of select statement is identical in the strong and the weak seman-
tics. We therefore postpone the discussion on select until Section 2.5.3.4.

2.4.4 Example

Before concluding the sequentially consistent memory model’s exposition, we walk
through the execution of a program and illustrate the application of many of the
derivation rules. As example, we will use the program of Listing 2.2 translated to
our syntax (see Listing 2.4).

Listing 2.4: Channel synchronization example using the syntax of Section 2.3

int x;
let c = make(chan int , 2) in

let _ = go { x := 42; c <- 0 } in
let _ = <- c in load x

Figure 2.10 shows a run of the program; 4 the execution steps are enumerated.
The first three lines are the initial runtime configuration. It shows the shared variable
initialized to 0 and the main thread. In the first step of execution, a channel of size 2
is created according to rule R-MAKEs: the backward queue is initialized to σ⊥,σ⊥
and the forward queue is empty. The setup function, here called ps, is spawn in the
second execution step via the application of R-GOs. Since there are no values in the
forward queue of channel c, the main thread is blocked on the receive: let _ =← c.
The only possible reduction then is for the setup thread to write to the shared variable
x, thus modifying x’s associated write event. This happens with the application of

4Technically, we have made a small simplification to the program and its execution, which is: we
elided the fact that stop (i.e., the empty select statement) is the only terminal in the grammar. For ease
of exposition, we allow the main thread to end after loading from x and we allow the setup thread to end
after sending 0 on x.

27

R-WRITEs on execution step 3. In step 4, the setup thread sends 0 onto the channel:
the forward queue is appended and the backward queue is shortened by one element
(see R-SENDs). At this point ps has run to the end and the main thread is unblocked.
Main receives (and ignores) a value from the channel (rule R-RECs) then loads the
content of variable x (rule R-READs).

(|x:=0|) ∥ p⟨let c = make (chan int,2) in

let _ = go {x := 42; c← 0} in
let _ = ← c in load x⟩

1−→ c f [] ∥ cb[σ⊥,σ⊥] ∥ (|x:=0|) ∥ p⟨let _ = go {x := 42; c← 0} in
let _ = ← c in load x⟩

2−→ c f [] ∥ cb[σ⊥,σ⊥] ∥ (|x:=0|) ∥ p⟨let _ = ← c in load x⟩ ∥
ps⟨x := 42; c← 0⟩

3−→ c f [] ∥ cb[σ⊥,σ⊥] ∥ (|x:=42|) ∥ p⟨let _ = ← c in load x⟩ ∥ ps⟨c← 0⟩
4−→ c f [0] ∥ cb[σ⊥] ∥ (|x:=42|) ∥ p⟨let _ = ← c in load x⟩ ∥ ps⟨⟩
5−→ c f [] ∥ cb[σ⊥,σ⊥] ∥ (|x:=42|) ∥ p⟨let _ = 0 in load x⟩ ∥ ps⟨⟩
6−→ c f [] ∥ cb[σ⊥,σ⊥] ∥ (|x:=42|) ∥ p⟨load x⟩ ∥ ps⟨⟩
7−→ c f [] ∥ cb[σ⊥,σ⊥] ∥ (|x:=42|) ∥ p⟨42⟩ ∥ ps⟨⟩

Figure 2.10: Reduction of a simple program according to the strong operational
semantics.

2.5 Weak operational semantics

In this section we define the operational semantics of the main calculus. We fix
the run-time configurations of a program before giving the operational rules in Sec-
tions 2.5.2 and 2.5.3. Besides processes (or goroutines) running concurrently, the
configuration will contain “asynchronous writes” to shared variables.

2.5.1 Local states, events, and configurations

The weak run-time configuration is given by the following syntax:

P ::= p⟨σ , t⟩ | m(|z:=v|) | c[q] | • | P ∥ P | νn P (2.6)

Similar to the strong semantics of Section 2.4, configurations in the weak seman-
tics consist of the parallel composition of goroutines, write events and channels.
Different from the strong semantics, a write event is labeled by a unique identifier,
typically m, m′2 . . . Also different, goroutines p⟨σ , t⟩ contain, besides the code t to

28

be executed, a local view σ = (Ehb,Es) detailing the observability of write events
from the perspective of p.

The problem with reasoning about memory writes in the presence of con-
currency is similar to the problem of generalizing the assignment Hoare triple
{Q[e/x]}x := e{Q} to the concurrency setting. What is true after an assignment in
a single thread model may not be true if the assignment takes place along threads
executing concurrently. In particular, interference from other threads may falsify
the post condition Q. One has then to either prove interference freedom or to
weaken the assertion. We choose not the say what the value of a shared variable is
at the end of an assignment. Instead, we keep track of what value it is not. We call
this local negative information since it is kept on a per-thread basis.

In our weak operational semantics, all write events of a given configuration are
observable by default. If there is more than one write event to a variable, those write
events are, by default, observable. So, from a thread’s perspective, a variable may
hold a superposition of values. It is possible for an event to no longer be visible
from a thread’s perspective. For example, say thread p writes value v to the shared
variable z, thus creating the write event m(|z:=v|). All write events m′ in a happens-
before relation with p’s current action become shadowed from p’s perspective and
are no longer observable. In other words, for all m′ such that m′→hb m, the value
associated with m′ is not observable by p. What p can observe by reading from the
shared variable z then is the value of any write event m′′(|z:=v′′|) where m′′↛hb m.
This includes the value v that p last wrote to z as well as the value of any other write
event that is concurrent with m.

Shadowed events are tracked in the local state σ , specifically in Es. In order to
properly update the list of shadowed events, the local state must also contain thread-
local information about the “happens-before” relationship between write events.
This information is kept in Ehb. We will see how thread local information is up-
dated when we introduce the derivation rules of Section 2.5.3.

Definition 3 (Local state). A local state σ is a tuple of type 2(N×X)× 2N . We use
the notation (Ehb,Es) to refer to the tuples and abbreviate their type by Σ. Let us
furthermore denote by Ehb(z) the set {m | (m, !z) ∈ Ehb}. We write σ⊥ for the local
state (/0, /0) containing neither happens-before nor shadow information.

For σ = (Ehb,Es) and σ ′ = (E ′hb,E
′
s), we define σ +σ ′ as the pairwise union,

i.e., σ +σ ′ = (Ehb ∪E ′hb,Es ∪E ′s). Also, we use Ehb +(m, !z) as a shorthand for
Ehb∪{(m, !z))}.

The following holds at the beginning of execution: there is only one goroutine
and no channels have been created yet; each shared variable is initialized to a known
value; the happens-before set of the main thread records the shared variables’ ini-
tialization; and there are no shadowed writes from main’s perspective.

29

Definition 4 (Initial weak configuration). An initial weak configuration is of the
form

νm⃗ (⟨σ0, t0⟩ ∥ m0(|z0:=v1|) ∥ . . . ∥ mk(|zk:=vk|))

where z0, . . .zk are all shared variables of the program, m⃗ represents m0, . . . ,mk, and
σ0 = (E0

hb,E
0
s) where E0

hb = {(m0, !z0), . . . ,(mk, !zk)} and E0
s = /0.

The initial weak configuration evolves according to the steps detailed next.

2.5.2 Local steps

Structural congruence≡ and the local transition steps⇝ defined in Section 2.4.2 are
carried unchanged from the strong to the weak semantics (cf. Figures 2.4, 2.5, and
2.6). The only addition is rule R-LOCAL, which “lifts” the local reduction relation
to the global level of configurations.

t1⇝ t2
R-LOCAL

⟨σ , t1⟩ −→ ⟨σ , t2⟩

2.5.3 Global steps

Steps that touch, besides local thread information, shared variables and channels,
are detailed next.

2.5.3.1 Reads and writes to shared memory

Rules R-WRITE and R-READ deal with the two basic interactions of threads with
shared memory: writing a local value into a shared variable and, inversely, read-
ing a value from a shared variable into the thread-local memory. Writing a value
records the corresponding event m(|z:=v|) in the global configuration, with m freshly
generated, see rule R-WRITE. The write events are remembered without keeping
track of the order of their issuance. Therefore, as far as the global configuration is
concerned, no write event ever invalidates an “earlier” write event or overwrites a
previous value in a shared variable. Instead, the global configuration accumulates
the “positive” information about all available write events which potentially can be
observed by reading from shared memory. Values which have never been written
cannot be observed, i.e., no out-of-thin-air behavior. Whereas the global configura-
tion remembers all write events indefinitely, filtering out values which are no longer
observable is handled thread-locally. In other words, which writes are observable
depends on the threads’ local perspective.

The local state σ of a goroutine captures which events are actually observable
from a thread-local perspective. Its primary function is to contain “negative” in-
formation: a read can observe all write events except for those shadowed. A write

30

event is shadowed if its identifier is contained in Es, see rule R-READ. In addi-
tion, the local state keeps track of write events that are thread-locally known to
have happened-before. These events are stored in Ehb. So, issuing a write com-
mand (rule R-WRITE) with a write event labeled m updates the local Ehb by adding
(m, !z). Additionally, the execution of a write instruction causes all previous writes
to the variable z (i.e., all writes which are known to have happened-before according
to Ehb) to become shadowed, thus enlarging Es. Later in this section, on page 33,
we look at an example of reads and writes, their effect on the happened-before and
shadow sets, and their impact on a thread’s ability to observe memory events.

So the global configurations remember writes indefinitely while the overwriting
and thus forgetting previous values is done individually per thread. This, perhaps
counter-intuitively, has the following consequence: if a goroutine reads the same
shared variable repeatedly, observing a certain value once does not imply that the
same value is read next time (even if no new writes are issued to the shared memory).
This is because all subsequent readings of the variable are independent and non-
deterministically chosen from the set of write events which are not yet shadowed.
This also means the semantics allows for a type of relaxation referred to in the
literature as coRR. The coRR behavior will be illustrated in the example at the end
of this Section, on page 33, and will be addressed further in the Discussion section.

As a final remark, note that it is possible for a write event to be shadowed by all
threads in a configuration. A write event that is shadowed by all threads can never
again be observed; it can never service any future reads from memory. Although
not included in the semantics, we could add a garbage collection rule that removes
globally shadowed write events from a configuration.

2.5.3.2 Channel communication

Different from the strong semantics, channel synchronization in the weak semantics
must also carry thread-local information. Recall from our discussion of the Go
memory model that there are two conditions that need to be satisfied. Condition 2.3
states that a send happens-before its corresponding receive. Therefore, events that
are in the sender’s past (at the time a message was sent), will also be in the receiver’s
past when the message is received. In our semantics, this is captured by not only
placing into the channel the value being sent, but also the sender’s local state. When
a goroutine receives a message, it receives the values sent as well as the sender’s
local state. Information from the sender to its corresponding receiver flows through
what we call the channel’s forward queue.

Condition 2.4 describes a synchronization effect due to channels’ capacity lim-
itation. In our semantics, the capacity limitation is modeled by having local state
information flowing in the opposite direction, meaning, from a previous receiver to
a later sender. This local state information flows through what we call the backward
queue. The backward queue accounts for the fact that a sender is only able to place
an item into a channel when the channel is not full. The channel not being full means

31

σ = (Ehb,Es) σ ′ = (Ehb +(m, !z),Es +Ehb(z)) fresh(m)
R-WRITE

p⟨σ ,z := v; t⟩ −→ νm (p⟨σ ′, t⟩ ∥ m(|z:=v|))

σ = (_,Es) m /∈ Es
R-READ

p⟨σ ,let r = load z in t⟩ ∥ m(|z:=v|) −→ p⟨σ ,let r = v in t⟩ ∥ m(|z:=v|)

q = [σ⊥, . . . ,σ⊥] |q |= v fresh(c)
R-MAKE

p⟨σ ,let r = make (chan T,v) in t⟩ −→ νc (p⟨σ ,let r = c in t⟩ ∥ c f [] ∥ cb[q])

¬closed(c f [q2]) σ ′ = σ +σ ′′
R-SEND

cb[q1 :: σ ′′] ∥ p⟨σ ,c← v; t⟩ ∥ c f [q2] −→ cb[q1] ∥ p⟨σ ′, t⟩ ∥ c f [(v,σ) :: q2]

v ̸=⊥ σ ′ = σ +σ ′′
R-REC

cb[q1] ∥ p⟨σ ,let r =← c in t⟩ ∥ c f [q2 :: (v,σ ′′)] −→
cb[σ :: q1] ∥ p⟨σ ′,let r = v in t⟩ ∥ c f [q2]

σ ′ = σ +σ ′′
R-REC⊥

p⟨σ ,let r =← c in t⟩ ∥ c f [(⊥,σ ′′)] −→ p⟨σ ′,let r =⊥ in t⟩ ∥ c f [(⊥,σ ′′)]

σ ′ = σ1 +σ2
R-REND

cb[] ∥ p1⟨σ1,c← v; t⟩ ∥ p2⟨σ2,let r =← c in t2⟩ ∥ c f [] −→
cb[] ∥ p1⟨σ ′, t⟩ ∥ p2⟨σ ′,let r = v in t2⟩ ∥ c f []

¬closed(c f [q])
R-CLOSE

p⟨σ ,close (c); t⟩ ∥ c f [q] −→ p⟨σ , t⟩ ∥ c f [(⊥,σ) :: q]

fresh(p2)
R-GO

p1⟨σ ,go t ′; t⟩ −→ ν p2 (p1⟨σ , t⟩ ∥ p2⟨σ , t ′⟩)

Figure 2.11: Operational semantics: Global steps

that there must have been a previous receiver who, by receiving and thus removing
an item from the channel, created an empty slot on the channel. Therefore, this old
receiving action can be placed in the past of the current sender. (There may also be
space in the queue because the queue was newly created. As we will see later, this
is taken into account by the R-MAKE rule, which governs channel creation.)

Thus, in order to account for their synchronization power, channels in our se-
mantics are composed of two queues. Given that they carry slightly different infor-
mation, these queues have different types as detailed next.

32

Definition 5 (Channels). A channel is of the form c[q1,q2], where c is a name and
(q1,q2) a pair of queues. The first queue, q1, is also referred to as the forward queue.
It contains elements of type (Val×Σ)+ ({⊥}×Σ), where Val is the value sent on
the channel, Σ is the local state of the sender when the message was placed on the
channel, and⊥ is a distinct, separate value representing the “end-of-transmission.”
The second queue, q2, is referred to as the backward queue. It contains elements of
type Σ and propagate the local state of a past receiver to a sender.

We write (v,σ) and (⊥,σ) for forward queue values and (σ) for the back-
ward queue values. Furthermore, we use the following notational convention: We
write c f [q] to refer to the forward queue of the channel and cb[q] to the backward
queue. We also speak of the forward channel and the backward channel. We write []
for an empty queue, e :: q for a queue with e as the element most recently added into
q, and q :: e for the queue where e is the element to be dequeued next. We denote
with |q | the number of elements in q. A channel is closed, written closed(c[q]), if q
is of the form ⊥ :: q′. Note that it is possible for a non-empty queue to be closed.

When creating a channel (cf. rule R-MAKE) the forward direction is initially
empty but the backward is initialized to a queue of length v corresponding to the
channel’s capacity. The backward queue contains empty happens-before and shadow
information, represented by the elements σ⊥. The rule R-MAKE covers both syn-
chronous and asynchronous channels. A synchronous channel is created with empty
forward c f [] and backward queue cb[]. Channel creation does not involve synchro-
nization.

Rules R-SEND and R-REC govern asynchronous channel communication while
R-REND implements synchronous communication. In an asynchronous send, a pro-
cess places a value on the forward channel along with its local state, provided the
channel is not full, meaning: the backward queue is non-empty. In the process of
sending, the sender’s local state is updated with the knowledge that the previous kth

receive has completed; this update is captured by σ ′ = σ +σ ′′ in the R-SEND rule.
To receive a value from a non-empty asynchronous channel (cf. rule R-REC), the
communicated value v is stored locally in the rule, ultimately in variable r. Ad-
ditionally, the local state of the receiver is updated by adding the previously sent
local-state information. Furthermore, the state of the receiver before the update is
sent back via the backward channel.

In synchronous communication, the receiver obtains a value from the sender and
together they exchange local state information. Recall that the Go memory model
specifies a send as happening-before its corresponding receive, and the ith receive
happening-before the (i+k)th send where k is the channel capacity. Therefore, when
a channel is synchronous, k = 0, we have that a send happens-before its correspond-
ing receive and the receive happens-before the corresponding send. In other words,
synchronous send and receive boil down to a rendezvous between two goroutines.
Note that the R-REND can apply only to open synchronous channels, which have

33

empty forward c f [] and backward queue cb[]. Also note that the rules R-SEND
and R-REC do not apply to synchronous channels.

The R-CLOSE rule closes both sync and async channels. R-SEND and R-REC,
resp. R-REND no longer apply to closed channels. Executing a receive on a closed
channel results in receiving the end-of-transmission marker ⊥ (cf. rule R-REC⊥)
and updating the local state σ in the same way as when receiving a properly sent
value. This happens regardless of whether the channel is synchronous or not. The
“value” ⊥ is not removed from the queue, so that all clients attempting to receive
from the closed channel obtain the communicated happens-before synchronization
information. Furthermore, there is no need to communicate happens-before con-
straints from the receiver to a potential future sender on the closed channel: after all,
the channel is closed. Consequently the receiver does not propagate back its local
state over the back-channel. Closing a channel resembles sending the special end-
of-transmission value ⊥ (cf. rule R-CLOSE). An already closed channel cannot be
closed again. In Go, such an attempt would raise a panic. Here, the panic is captured
by the absence of enabled transitions.

2.5.3.3 Select statement

Rules dealing with the select statement in the weak semantics are given in Fig-
ure 2.12. The R-SEL-SEND and R-SEL-REC rules apply to asynchronous chan-
nels and are analogous to R-SEND and R-REC. The R-SEL-SYNC rules apply to
open synchronous channels (i.e., the forward and backward queues are empty). The
R-SEL-REC⊥ is analogous to R-REC⊥. Finally, the default rule (R-SEL-DEF) ap-
plies when no other select rule applies.

2.5.3.4 Thread creation

Lastly, thread creation leads to a form of a synchronization where the spawned go-
routine inherits the local state of the parent (cf. rule R-GO).

2.5.4 Example

Before concluding the memory model’s exposition, we revisit the example from the
Background section. What follows next is a highlight the differences in execution
under the weak semantics versus under the strong one presented in Section 2.4.4.
The example involves a main thread that spawns a setup thread, setup writes to a
shared variable that is later read from main. The two threads communicate over a
shared channel reference. See Listing 2.4.

The first thing to notice from the run depicted in Figure 2.13 is that, contrasted
with the sequentially consistent semantics, write events are now labeled, including
the event associated with the initialization of the shared variable x. As we will see,
“knowledge” of these events is stored on a per-thread basis and transmitted through

34

gi = c← v ¬closed(c f [q f]) σ ′ = σ +σ ′′
R-SEL-SEND

cb[qb :: (σ ′′)] ∥ p⟨σ ,∑i let ri = gi in ti⟩ ∥ c f [q f] −→
cb[qb] ∥ p⟨σ ′, ti[()/ri]⟩ ∥ c f [(v,σ)) :: q f]

gi =← c q f = q′f :: (v,σ ′′) v ̸=⊥ q′b = (σ) :: qb σ ′ = σ +σ ′′
R-SEL-REC

cb[qb] ∥ p⟨σ ,∑i let ri = gi in ti⟩ ∥ c f [q f] −→
cb[q′b] ∥ p⟨σ ′,let ri = v in ti⟩ ∥ c f [q′f]

gi = c← v σ ′ = σ1 +σ2 cb[] c f []
R-SEL-SYNC1

p1⟨σ1,∑i ri = gi in ti⟩ ∥ p2⟨σ2,let r =← c in t2⟩ −→
p1⟨σ ′, ti[()/ri]⟩ ∥ p2⟨σ ′,let r = v in t2⟩

gi =← c σ ′ = σ1 +σ2 cb[] c f []
R-SEL-SYNC2

p1⟨σ1,c← v; t1⟩ ∥ p2⟨σ2,∑i let ri = gi in ti⟩ −→
p1⟨σ ′, t1⟩ ∥ p2⟨σ ′,let ri = v in ti⟩

gi = c← v g j =← c σ ′ = σ1 +σ2 cb[] c f []
R-SEL-SYNC3

p1⟨σ1,∑i let ri = gi in ti⟩ ∥ p2⟨σ2,∑ j let r j = g j in t j⟩ −→
p1⟨σ ′, ti[()/ri]⟩ ∥ p2⟨σ ′,let r j = v in t j⟩

gi =← c c f [(⊥,σ ′′)] σ ′ = σ +σ ′′
R-SEL-REC⊥

p⟨σ ,∑
i
let ri = gi in ti⟩ −→ p⟨σ ′,let ri =⊥ in ti⟩

gi =default ¬∃ j. i ̸= j. p⟨σ ,∑ j let r j = g j in t j⟩ ∥ P−→ p⟨σ ′, t ′⟩ ∥ P′
R-SEL-DEF

p⟨σ ,∑
i
let ri = gi in ti⟩ ∥ P −→ p⟨σ , ti[()/ri]⟩ ∥ P

Figure 2.12: Operational semantics: Select statement

channels. Also take note of the additional structure σ , which is used to store thread-
local information. The main thread starts with local state σ0 = {E0

hb,E
0
s }, where

E0
hb = {(m0,x)} and E0

s = /0. In other words, at the beginning of execution the main
thread has: 1) a record of the shared variable’s initialization in the happens-before
set E0

hb, and 2) no write event identifiers in the shadowed set E0
s .

In the first reduction step, the main thread creates a new channel. Similar to
the sequentially consistent semantics, the channel is composed of two queues; the
forward queue q f is initially empty while the backward queue qb is initialized to two
empty local states σ⊥,σ⊥ where σ⊥ = (/0, /0). These local states represent the fact

35

m0(|x:=0|) ∥ p⟨σ0,let c = make (chan int,2) in
let _ = go {x := 42; c← 0} in
let _ = ← c in load x⟩

1−→ c f [] ∥ cb[σ⊥,σ⊥] ∥ m0(|x:=0|) ∥ p⟨σ0,let _ = go {x := 42; c← 0} in
let _ = ← c in load x⟩

2−→ c f [] ∥ cb[σ⊥,σ⊥] ∥ m0(|x:=0|) ∥ p⟨σ0,let _ = ← c in load x⟩ ∥
ps⟨σ0,x := 42; c← 0⟩

3−→ c f [] ∥ cb[σ⊥,σ⊥] ∥ m0(|x:=0|) ∥ p⟨σ0,let _ = ← c in load x⟩ ∥
m1(|x:=42|) ∥ ps⟨σ1,c← 0⟩

4−→ c f [(0,σ1)] ∥ cb[σ⊥] ∥ m0(|x:=0|) ∥ p⟨σ0,let _ = ← c in load x⟩ ∥
m1(|x:=42|) ∥ ps⟨σ1,⟩

5−→ c f [] ∥ cb[σ⊥,σ⊥] ∥ m0(|x:=0|) ∥ p⟨σ2,let _ = 0 in load x⟩ ∥
m1(|x:=42|) ∥ ps⟨σ1,⟩

6−→ c f [] ∥ cb[σ⊥,σ⊥] ∥ m0(|x:=0|) ∥ p⟨σ2,load x⟩ ∥
m1(|x:=42|) ∥ ps⟨σ1,⟩

7−→ c f [] ∥ cb[σ⊥,σ⊥] ∥ m0(|x:=0|) ∥ p⟨σ2,42⟩ ∥
m1(|x:=42|) ∥ ps⟨σ1,⟩

Figure 2.13: Reduction of a simple program according to the weak operational se-
mantics.

that the channel has capacity two and is currently empty. In the second reduction
step, main forks a new thread ps. According to rule R-GO, the new thread inherits
the parent’s local state σ0. After that, the main thread blocks attempting to receive
from an empty channel.

Next, ps writes 42 to x. According to R-WRITE, this creates a new write event
with a fresh name, m1, and modifies ps’s local state to σ1 = (E1

hb,E
1
s). Naturally, as

ps is aware of its own writing to x, the write event m1 is recorded in ps’s happens-
before set, meaning (m1,x)∈E1

hb. The initial value of x is no longer visible from ps’s
perspective, since it has been overwritten by the more recent write event m1. There-
fore, the write event m0 associated with x’s initialization is placed in ps’s shadow
set, meaning m0 ∈ E1

s . Therefore, σ1 = ({(m0,x),(m1,x)},{m0}).
Note that, at this point, the write event m1 is not yet recorded into the main

thread’s local state. Note that, according to the read rule, R-READ, the write event
m1 is observable from main’s perspective. So is the initial write event m0. As we will
see in the Discussion section, this superposition of values is known in the memory-
model literature as the coRR relaxation. When it comes to this particular example,

36

the main thread is blocked, thus it is not able to read from x and the coRR behavior
does not emerge.

Next, the setup thread sends a message onto the shared channel; see step 4.
According to R-SEND, the message’s value is placed into the channel along with
the sender’s current local state. Then, in step 5, main receives the message and
updates its local state. The new local state, σ2 reflects the fact that main is now
aware of the events that took place (according to the sender’s perspective) when the
message was put onto the channel. In other words, main’s local state is the old local
state σ0 augmented by the state σ1 received through channel communication:

σ2 = σ0 +σ1 = ({(m0,x),(m1,x)},{m0})

The communication served to synchronize the actions of the setup thread from
the perspective of the main thread. At this point, main is also not able to observe
the initial value of the shared variable x = 0. The only observable write event is m1;
therefore, the load x reduces to 42 in step 6.

It is worth to note that, without channel communication, synchronization would
not have been possible. For example, if instead of sending a message, setup and
main tried to synchronize by writing to a shared variable (as shown in Listing 2.1),
then main’s local state would not be updated to reflect the actions performed by
setup. The program would contain a data race in this case.

2.6 Relating the strong and the weak semantics

This section describes the relationship between the strong and the weak seman-
tics. After some preliminary definitions, Section 2.6.1 covers the easy direction: the
weak semantics subsumes the strong one. The converse direction does not hold in
general; it holds only when excluding race condition. This is established in Sec-
tion 2.6.2. Additional intermediate lemmas are relegated to the appendix, in partic-
ular Appendix A.2.

Let us recall the definition of simulation [70] relating states of labeled transition
systems. The set of transition labels and the information carried by the labels may
depend on the specific steps or transitions done by a program and/or the observations
one wishes to attach to those steps. This design choice leads to a distinction between
internally and externally visible steps. Let us write α for arbitrary transition labels.
Later we will use a for visible labels and τ as the label of invisible or internal steps.

Definition 6 (Simulation). Assume two labeled transition systems over the same set
of labels and with state sets S and T . A binary relation R ⊆ S×T is a simulation
relation between the two transition systems if s1

α−→ s2 and s1 R t1 implies t1
α−→ t2

for some state t2. Diagrammatically:

37

s1 t1

s2 t2

R

α α

R

A state t simulates s, written t ≳ s, if there exists a simulation relation R such that
sR t.

We use formulations like “s is simulated by t” interchangeably, and ≲ as the
corresponding symbol. Also, we subscript the operational rules for disambiguation;
for example, R-READs refers to the strong version of the read while R-WRITEw
to the weak version of the write operation. The rules of the strong semantics are
simplifications of the weak rules given in Section 2.5. More concretely, in the strong
semantics, write events are unique per variable, goroutines do not have a local state
σ , and channels do not carry local state information

The operational semantics is given as unlabeled global transitions −→. To estab-
lish the relationship between the strong and the weak semantics, we make the steps
of the operational semantics more “informative” by labeling them appropriately: For
read steps by rule R-READs and R-READw, when reading a value v from a variable

z, the corresponding step takes the form
(z?v)−−−→. All other steps, −→ as well as ⇝

steps, are treated as invisible and noted as τ−→ in the simulation proofs. We make use
of the following “alternative” labeling for the purpose of defining races and for some
of the technical lemmas: we label write and read steps with the identity of the go-
routine responsible for the action and the affected shared variable. Additionally, we
sometimes mention as part of the label the identity n of the concerned write event.

The labeled transitions are thus of the form
n(z!)p−−−→ or

n(z?)p−−−→. When not needed in
the formulation of a property or a proof, we omit mentioning irrelevant parts of the
transition labels. We often use subscripts when distinguishing the strong from the

weak semantics; e.g.
(z!)p−−→w and

(z!)p−−→s. We write =⇒ for τ−→∗ and a
=⇒ for τ−→∗ a−→ τ−→∗.

2.6.1 The weak semantics simulates the strong

Lemma 2 (Simulation). Let S0 and P0 be a strong, resp. a weak initial configuration
(for the same program with the same initial values for the global variables). Then
P0 ≳ S0.

The proof is given in Appendix A.1.

2.6.2 The strong semantics conditionally simulates the weak one

It should be intuitively clear and expected that the weak semantics “contains” the
sequentially consistent strong one as special case. In other words, we expect the
weak semantics to be able to simulate the strong one. Equally clear is that the

38

opposite direction —the strong semantics simulates the weak— does not hold in
general. If a simulation relation would hold in both directions, the two semantics
would be equivalent,5 thus obviating the whole point of a weak or relaxed memory
model.

Simulation of the weak semantics by the strong one can only be guaranteed
“conditionally.” The standard condition is that the program is “well-synchronized.”
We take that notion to represent the absence of data races, where a data race is a
situation in which two different threads access the same shared variable, at least one
of the accesses is a write, and the accesses are not ordered by the happens-before
relation. The definition is used analogously for the weak semantics.

From the fact that the weak semantics simulates the strong one, we have that
every race condition in the strong semantics can be exhibited in the weak. The
converse, however, is not true: the weak semantics has races not present in the
strong one. The new races in the weak semantics come from the fact that once
a race is reachable, the weaker version of the semantics allows values to be read
which are unobservable to the corresponding sequentially consistent configuration.
Therefore, the first race condition is what leads the weak semantics to behaviors
not present in the strong one. Naturally, if a program is race free from the strong
semantics’ perspective, it must be race free from the weak’s perspective as well. In
other words, when checking for race freedom, it suffices to observe behavior under
the strong semantics, which is arguably simpler.

This is, of course, an informal discussion. Next we prove that the weak seman-
tics upholds the DRF-SC guarantee. The proof will be another simulation result:
the strong semantics conditionally simulates the weak one; the condition requires
programs to be data race free.

2.6.2.1 General invariant properties

Let us introduce some general properties of the weak semantics (i.e., without as-
suming race freedom) that will be useful later in conditional simulation proof. The
proofs of the lemmas presented next are mostly relegated to Appendix A.2.2.1.

Definition 7 (Observable and concurrent writes). Let WP stand for the set of all
write events m(|z:=v|) in a weak configuration P and let WP(z) stand for the set of
identifiers of writes events to the variable z:

WP(z) = {m | m(|z:=v|) ∈WP} . (2.7)

Given a well-formed configuration P, the sets of writes that happens-before, that
are concurrent, and that are observable by process p for a variable z are defined as

5A simulation in both directions, i.e., the relation ≳ ∩≲, does not technically correspond to bisimu-
lation, but expresses a form of equivalence nonetheless.

39

follows:

W hb
P (z@p) = Ehb(z@p) (2.8)

W 9
P (z@p) = WP(z)\Ehb(z@p) (2.9)

W o
P (z@p) = WP(z)\Es(z@p) . (2.10)

We also use notations like W o
P (_@p) to denote the set of observable write events in

P for any shared variable.

Lemma 3 (Invariants about write events). The weak semantics has the following
invariants.

1. For all local states (Ehb,Es) of all processes, Es ⊂ Ehb(z).

2. W 9
P (z@p)⊆W o

P (z@p).

3. W 9
P (z@p) ̸=W o

P (z@p).

4. W hb
P (z@p)∩W o

P (z@p) ̸= /0.

As W o
P (z@p) is a proper superset of W 9

P (z@p) by part (2) and (3), each thread
can observe at least one value held by a variable. This means, unsurprisingly, that
no thread will encounter an “undefined” variable. More interesting is the following
generalization, namely that at each point and for each variable, some value is jointly
observable by all processes. The property holds for arbitrary programs, race-free or
not. Under the assumption of race-freedom, we will later obtain a stronger “con-
sensus” result: not only is a consensus possible, but there is exactly one possible
observable write, not more.

Lemma 4 (Consensus possible). Weak configurations obey the following invariant∩
p∈P W o

P (z@p) ̸= /0 . (2.11)

2.6.2.2 Race-free reductions

Next, we present invariants that hold specifically for race-free programs but not
generally. These invariants will be needed to define the relationship between the
strong and weak semantics via a bisimulation relation. More concretely, the follow-
ing properties are ultimately needed to establish that the relationship connecting the
strong and the weak behavior of a program is well-defined.

Lemma 5 (No concurrent writes when it counts). Let P be a reachable configuration
in the weak semantics, i.e., P0 −→∗w P where P0 is the initial configuration derived
from program P.

40

1. Assume P has no read-write race. If P
(z?)p−−→w, then W 9

P (z@p) = /0.

2. Assume P has no write-write race. If P
(z!)p−−→w, then W 9

P (z@p) = /0.

The following lemma, resp. the subsequent corollary express a welcome invari-
ant concerning the observability of write events for a given variable z and seen from
the perspective of a thread doing the next read or write step. At the point specified
by the lemma, there is exactly one write event for z, which is observable by p, and
actually its commonly observable by sets of threads that includes the thread in ques-
tion. As one consequence, each read-step by a thread in a configuration of race-free
program observes exactly one value as opposed to choosing non-deterministically.

Lemma 6 (Race-free consensus when it counts). Assume P0−→∗w P with P0 race-free.

If P
(z?)p−−→w or P

(z!)p−−→w, then there exists a write event m(|z:=v|) such that∩
pi

W o
P (z@pi) = {m} , (2.12)

where the intersection ranges over an arbitrary set of processes which includes p.

Corollary 7 (Locally deterministic read). Assume P0 −→∗w P with P0 race-free. Then

P
n1(?)p−−−→w and P

n2(?)p−−−→w implies n1 = n2.

Lemma 8 (Race-free consensus). Weak configurations for race-free programs obey
the following invariant∩

pi∈P W o
P (z@pi) = {m} (2.13)

for some write event m(|z:=v|).

Definition 8 (Well-formedness for race-free programs). A weak configuration P is
well-formed if

1. write-event references and channel references are unique, and

2. equation (2.13) from Lemma 8 holds.

We write ⊢rf
w P : ok for well-formed configurations P.

We need to relate the weak and strong configurations via a simulation relation
in order to establish the connection between the race-free behaviors of the weak and
strong semantics. We will do so by the means of an erasure function from the weak
to the strong semantics.

Definition 9 (Erasure). The erasure of a well-formed weak configuration P, written
⌊P⌋, is defined as ⌊P⌋ /0 where ⌊P⌋R is given in Table 2.1 and R is a set of write event
identifiers. On the queues q1 and q2 in the last case, the function simply jettisons the
σ -component in the queue elements.

41

⌊•⌋R = • (2.14)

⌊p⟨σ , t⟩⌋R = ⟨t⟩ (2.15)

⌊m(|z:=v|)⌋R =

{
• if m ∈ R
(|z:=v|) otherwise

(2.16)

⌊P1 ∥ P2⌋R = ⌊P1⌋R ∥ ⌊P2⌋R (2.17)

⌊νn P⌋R =

{
⌊P⌋R if ∀p ∈ P. n ∈W o

P (_@p)
⌊P⌋R∪{n} otherwise

(2.18)

⌊c[q1,q2]⌋R = c[⌊q1⌋R,⌊q2⌋R] (2.19)

Table 2.1: Definition of the erasure function ⌊P⌋R

Note that ⌊P⌋ is not necessarily a well-formed strong configuration. In particular,
⌊P⌋ may contain two different write events (|z:=v1|) and (|z:=v2|) for the same vari-
able. Besides, it is not a priori clear whether ⌊P⌋ could remove all write events for
a given variable (thus leaving its value undefined) and the configuration ill-formed.

Lemma 9 (Erasure and congruence). P1 ≡ P2 implies ⌊P1⌋ ≡ ⌊P2⌋.

Lemma 10 (Erasure preserves well-formedness). Let P be a race-free reachable
weak configuration. If ⊢w P : ok then ⊢s ⌊P⌋ : ok.

Theorem 11 (Race-free simulation). Let S0 and P0 be a strong, resp. a weak initial
configuration for the same thread t and representing the same values for the global
variables. If S0 is data-race free, then S0 ≳ P0.

Proof. Assume two initial race-free configurations P0 and S0 from the same program
and the same initial values for the shared variables. To prove the ≳-relationship be-
tween the respective initial configurations we need to establish a simulation relation,
sayR, between well-formed strong and weak configurations such that P0 and S0 are
in that relation.

Let P and S be well-formed configurations reachable (race-free) from P0 resp.
S0. DefineR as relation between race-free reachable configurations as

PR S if S≡ ⌊P⌋ (2.20)

using the erasure from Definition 9. Note that by Lemma 9, P1 R S and P1 ≡ P2
implies P2 R S.

42

Case: R-WRITEw: p⟨σ ,z := v; t⟩ −→w νm (p⟨σ ′, t⟩ ∥ m(|z:=v|)),
where σ = (Ehb,Es) and σ ′ = (E ′hb,E

′
s) = (Ehb + (m,z),Es + Ehb(z)). By the

concurrent-writes Lemma 5(2), W 9
P (z@p) = /0, i.e., there are no concurrent write

events from the perspective of p. This implies that for all write events m′(|z:=v′|)
in P, we have m′ ∈ Ehb. If m′ ∈ Es, then m ∈ E ′s as well. If m′ ∈ Ehb \Es, then
m′ ∈ E ′s as well. Either way, all write events to z contained in P prior to the step are
shadowed in p after the step.

Now for the new write event m in P′: clearly m ∈W o
P′(z@pi), i.e., the event is

observable for all threads. By the race-free consensus Lemma 8, we have that this is
the only event that is observable by all threads, i.e.,∩

pi

W o
P′(z@pi) = {m} . (2.21)

That means for the erasure of P′ that ⌊P′⌋ ≡ . . . ∥ p⟨t⟩ ∥ (|z:=v|) where (|z:=v|) is the
result of applying ⌊_⌋ to the write event m(|z:=v|) of P. In particular, equation (2.21)
shows that the write event m is not “filtered out” (cf. the cases of equation (2.16)
and (2.18) in Definition 9) and furthermore that all other write events for z in P′ are
filtered out.6 It is then easy to see that by R-WRITEs, ⌊P⌋ −→s ⌊P′⌋.

The remaining cases are similar.

2.7 Implementation

We have implemented the strong and the weak semantics in K, a rewrite-based ex-
ecutable semantics framework [51, 87]. Concretely, the implementation helped us
work through corner cases in the semantics. In addition, we believe the code can
help the interested reader assimilate the reduction rules and explore alternatives by
making modifications to the sources available online [29]. We have made use of K’s
built-in types and data-structures (Set, Map, and List), which we believe facilitated
the work. The code is modular. In fact, most of the implementation (i.e. rules re-
lated to local steps, goroutine creation, channel communication) is reused between
the weak and strong semantics. The implementation of the weak and strong seman-
tics differ only when it comes to the treatment of memory.

To give a flavor of the rewriting rules, we start by looking at part of the imple-
mentation of the R-RECEIVE rule in Figure 2.11. The code, given in Figure 2.14, in-
volves a goroutine receiving a value from a chan. The condition under “requires”
stipulates additionally that the value being read from the channel must not be the spe-
cial end-of-transmission marker (the act of attempting to receive from a previously
closed channel is handled by a different rewrite rule).

A term to the left of => is rewritten to the term on the right. In this particular
case, the receive reduces to V (line 2) corresponding to the head of the forward

6The latter is indirectly clear already as we have established that ⌊⌋ preserves well-formedness under
the assumption of race-freedom (Lemma 10).

43

queue (line 12). The receiving goroutine’s local state is updated. In specific, its
happens-before and shadowed information (HMap and SSet on lines 4 and 5) are
rewritten to take into account the happens-before and shadow information in the
forward queue (HMapDp and SSetDp on lines 13 and 14 resp.). The received entry is
removed from the forward queue (lines 12-14) and the receiver’s local state is added
to the channel’s backward queue (lines 15 and 16).

1 rule <goroutine >
2 <k> <- channel(Ref:Int) => V ... </k>
3 <sigma >
4 <HB > HMap:Map => mergeHB(HMap , HMapDP) </HB >
5 <S> SSet:Set => SSet SSetDP </S>
6 </sigma >
7 <id > _ </id >
8 </goroutine >
9 <chan >

10 <ref > Ref </ref >
11 <type > _ </type >
12 <forward > ListItem(ListItem(V)
13 ListItem(HMapDP)
14 ListItem(SSetDP)) => .List </forward >
15 <backward > BQ:List => ListItem(ListItem(HMap)
16 ListItem(SSet)) BQ </backward >
17 </chan >
18 requires notBool(V ==K $eot)

Figure 2.14: Snippet from the implementation of the channel receive rule in K

The implementation gives us the ability to execute programs and observe
their output. At the start of execution, the runtime configuration has the format
shown in Figure 2.15, with goroutines held inside <G>...</G>, write events inside
<W>...</W>, and channels inside <C>...</C>. The initial configuration features a
single goroutine whose id is 1 (line 4). Initially, this goroutine holds no happens-
before or shadowed information (lines 7 and 8 resp.). The tokens $PGM:Pgm are a
placeholder for a syntactically valid program that gets filled by K when execution
starts. If the program declares shared variables, the implementation initializes them
to 0.

As execution progresses, meaning, as write events are recorded and additional
goroutines and channels are created, the configuration is expanded. Take the ex-
ample given in Section 2.2, where a simple setup function is called asynchronously
from main. The example, rewritten in the proposed syntax, is shown in Listing 2.4.
Coordination is achieved through a shared channel. A message indicates that the
setup is complete and, according to the semantics of channel communication, the
receiver can no longer read the initial shared variable’s value and will instead read
the value updated by the setup function.

44

1 <mmgo >
2 <G>
3 <goroutine >
4 <id > 1 </id >
5 <k> $PGM:Pgm </k>
6 <sigma >
7 <HB> .Map </HB >
8 <S> .Set </S>
9 </sigma >

10 </goroutine >
11 </G>
12 <W> .Map </W>
13 <C> .ChanCellBag </C>
14 </mmgo >

Figure 2.15: The initial runtime configuration

Figure 2.16 shows the end configuration7 for a run of the example. In it, there are
two goroutines: the “main” goroutine (whose id is 1) terminates in state “42” (line 4)
corresponding to the value read from the shared variable. The “setup” goroutine
terminates in the state unit (line 11), which is the value resultant from executing
its last instruction, namely c<-0. Note that there are two write events recorded in
the final configuration. One coming from the initialization of x to 0 and another
corresponding to the write of 42 into x by the “setup” goroutine. Note also the
presence of a channel inside <C>, which was created by “main” to coordinate with
“setup.”

2.8 Discussion

This section positions our work in a wider context, revisiting notions from axiomatic
semantics of memory models and using litmus tests to highlight similarities and dif-
ferences between our semantics and a well-formulated axiomatic one [3]. In the
axiomatic semantics of memory models, the execution of a given program (i.e., the
manifestation of a particular control flow and thread interleaving) gives rise to can-
didate executions. Candidate executions are graphs that help define and illustrate
behavior accepted or rejected by the semantics; see [10] as example. The graphs are
composed of events (nodes) representing memory operations and relations (edges)
over events. In this section we use (n:Rx = v)p and (n:Wx = w)p for read and write
events of a value v on a shared variable x, where n is the unique identifier and p is
the identifier of the thread responsible for the event. The thread identifier is omitted
when it can be deduced from the context.

7An end configuration is a configuration to which no further rewrite rules apply.

45

1 <mmgo >
2 <G>
3 <goroutine > <id > 1 </id >
4 <k> 42 </k>
5 <sigma >
6 <HB > x |-> (SetItem (3) SetItem (7)) </HB >
7 <S> SetItem (3) </S>
8 </sigma >
9 </goroutine >

10 <goroutine > <id > 5 </id >
11 <k> $unit </k>
12 <sigma >
13 <HB > x |-> (SetItem (3) SetItem (7)) </HB >
14 <S> SetItem (3) </S>
15 </sigma >
16 </goroutine >
17 </G>
18 <W> x |-> (3 |-> 0 7 |-> 42) </W>
19 <C>
20 <chan >
21 <ref > 4 </ref >
22 <type > int </type >
23 <forward > .List </forward >
24 <backward >
25 ListItem(ListItem(x |-> SetItem (3)) ListItem (.Set))
26 ListItem(ListItem (.Map) ListItem (.Set)) </backward >
27 </chan >
28 </C>
29 </mmgo >

Figure 2.16: Sample output from running Listing 2.4 on the weak semantics

Aspects of a memory model are often captured by litmus tests, which are tailor-
made code snippets that highlight features of a memory model. As illustration, on
the left of Figure 2.17 is the well-known litmus test for message passing (mp) and,
on the right, a corresponding candidate execution. The code snippet shows process
p0 sending data to p1 via x and using a write to y as signal that the data is “ready.”
For this simple form of synchronization to work, the observation r1 = 1 and r2 = 0
must be forbidden. The underlying assumptions, in this case, are that 1) the order
of reads by p1 reflects the order in which the writes are effected by p0, and 2) the
writes by p0 respect program order.

The candidate execution of Figure 2.17b gives a justification for the impossibil-
ity of the observation r1 = 1 and r2 = 0 which violates the mp pattern. The edge
n2→rf n3 of the “read-from” relation→rf expresses the fact that n3 reads the value
written by n2. More complex is the “from-read” relation: the edge n4 →fr n1 stip-
ulates that n4 “reads-from” some write event left unmentioned and for which n1
comes “after.” More precisely, it abbreviates n0→rf n4 for some write event n0 with

46

p0 p1
x := 1; r1 := y;
y := 1; r2 := x;

not (r1 = 1 and r2 = 0)

(a) Litmus test

p0 p1

n1:Wx = 1

n2:Wy = 1

n3:Ry = 1

n4:Rx = 0

ppo

rf

ppo

fr

(b) Candidate execution

Figure 2.17: Message passing (mp)

n0→co n1 and where→co represents the coherence order, which is a total order of
writes over the same memory location. In the example, n0 is the write event setting
x to its initial value 0; by convention, such initialization events are often left out of
candidate executions. Using the mentioned coherence order, the from-read relation
captures the intuition that a read observes a value written prior to subsequent write.
In contrast to the concept of coherence order, our model does not employ the notion
of a total order of writes on a location. Instead, information about which writes are
observable by a read is kept local per thread and past writes events are considered
unordered.

Note from the mp example that the preserved program order edges n1→ppo n2
and n3 →ppo n4 disallow out-of-order execution of the two writes and, also, of the
two reads. The preservation of program order is characteristic for strong memory
models such as the semantics presented in Section 2.4. In weaker settings, the→ppo-
edges may be replaced by→po-edges. For example, both our model and PSO-style
memory models with per-location write buffers allow the observation r1 = 1 and
r2 = 0 in the mp litmus test of Figure 2.17. From our perspective, however, the
treatment of the writes is best not seen as “buffering” since, after all, the value
of a write becomes immediately observable in our operational semantics. In our
weak memory model, it is the negative information of being unobservable that is
not immediately available to all observers. To percolate through the system, this
negative information requires synchronization via channel communication.

Another aspect of our semantics is that, from an observer thread’s perspective,
writes from different threads never invalidate each other. In the absence of syn-
chronization, writes from other threads remain observable indefinitely. A litmus test
typifying that kind of behavior is known as coRR,8 shown in Figure 2.18.

The fact that repeated reads by the same thread give different seemingly incoher-

8In general, coherence tests coXY involve an access of kind X and an access of kind Y with X and
Y standing for either R (read) or W (write).

47

p0 p2
r1 := x; x := 1;
r2 := x;

r1 = 1, r2 = 0

(a) Litmus test

p0 p1

n1:Rx = 1

n2:Rx = 0

n3:Wx = 1

po

rf

fr

(b) Candidate execution

Figure 2.18: coRR

ent values can be interpreted as a form of oscillation: when reads and writes happen
“at the same time,” i.e., in a racy way without proper synchronization, the mem-
ory can be perceived as oscillating. Conceptually, in the example of Figure 2.18, x
oscillates between the old value 0 and the new value of 1 indefinitely.

This behavior is allowed by our proposed semantics. As a matter of fact, it is also
allowed by Sparc RMO [48] and pre-Power4 machines [96]. Many other models,
though, including the axiomatization by [3], disallow the coRR behavior.

Load buffering is a relaxation which complements write buffering. Its effect is
often illustrated by the litmus test of Figure 2.19. The candidate execution graph
shows a run which justifies r1 = 1 and r2 = 1 as follows: the load or read of event n1
is buffered, thereby taking effect after the write event n4. This causes the instructions
n3 and n4 to be executed out-of-order. For p0, however, the read cannot be postponed
until after the write, as the value of the write depends, via r1, on the value being
read. Program order has to be preserved due to a data dependence, indicated by a
→ppo-edge. The circumstances in which program order is preserved depends on the
programming language semantics and/or the given hardware memory model. For
example, various forms of special fence instructions (e.g. light-weight fences, full
fences, control fences), which directly affect ordering, may be available on a given
platform.

In contrast to writes, our semantics treats reads in a “strong,” unbuffered way.
Load buffering is conceptually more challenging than write buffering. Thinking op-
erationally, dispatching an “asynchronous” write instruction is like “fire-and-forget.”
When executing an “asynchronous” read, however, the corresponding process con-
tinues regardless of whether the value it wishes to read has been obtained. This
non-blocking nature is particularly problematic if it is assumed (as in our model)
that reading is done without any synchronization. Subsequent code may depend on
the value being read; the dependency may not only be a data-dependency (as the
write to y in Figure 2.19a), but also a control flow dependency. Control flow depen-

48

p0 p1
r1 := x; r2 := y;
y := r1; x := 1;

r1 = 1, r2 = 1

(a) Litmus test

p0 p1

n1:Rx = 1

n2:Wy = 1

n3:Ry = 1

n4:Wx = 1

ppo

rf

po

rf

(b) Candidate execution

Figure 2.19: Load buffering (lb)

dency on values not yet available are common. When the reads are “synchronous,”
these dependencies are not an issue: execution is stalled until the value is available.
Difficulties emerge when the reads are “asynchronous;” in these cases, a decision
has to be made regardless of whether the value is resolved. Only later, when the
actual value is present, can the decision be revised. It could be the case that the de-
cision is later deemed acceptable and execution continues as usual. It could also be
the case that the branch decision leads to an impossibility, in which case execution
needs to be back-tracked and an alternate path explored. It could also be the case
that the branching decision is justified given a circular argument. As we will see
next, circular reasoning is often deemed undesirable in a memory model.

One important aspect in connection with load buffering is illustrated in Fig-
ure 2.20. It closely resembles the previous case from Figure 2.19. The crucial
difference is an additional data dependency in p1: the write statement has a data
dependency on the preceding read event. This dependency is reflected in the graph
by a→ppo-edge, as opposed to a→po-edge as in Figure 2.19b.

p0 p1
r1 := x; r2 := y;
y := r1; x := r2;

r1 = 1, r2 = 1 (out-of-thin-air)

(a) Litmus test

p0 p1

n1:Rx = 1

n2:Wy = 1

n3:Ry = 1

n4:Wx = 1

ppo

rf

ppo

rf

(b) Candidate execution

Figure 2.20: lb+ppos

49

The outcome r1 = 1 = r2 could be justified in that n1 reads the value 1 written
by n4, subsequently used in the write n2, which in turn is read by n3, and used in
the write event n4 (see the candidate execution). This involves a circular argument
and produces a value, the number 1, that does not even appear in the program text.
Such behavior is termed “out-of-thin-air” and is generally, though not universally,
considered illegal. In other words, the candidate graph of Figure 2.20b is ruled
out by many memory models, for example [3]. Our operational semantics, given
the absence of load buffering, also does not exhibit out-of-thin air behavior. Note,
however, that in the informal happens-before Go memory model [40], out-of-thin-
air behavior of this kind is allowed, as there are no statements or mechanisms which
forbid the behavior. The Go model operates with the plain notion of program order
→po, stipulating that→po ⊆ →hb. Therefore, in the situation of Figure 2.20, with
→po instead of→ppo-edges, the out-of-thin-air observation is perfectly acceptable.9

Finally, we go back to the message passing pattern from Figure 2.17 to illustrate
the role of channel communication. The assured ordering of the reads, resp. writes,
represented by→ppo-edges in Figure 2.17b can also be enforced by various fences.
A properly synchronized message passing protocol would require, in many relaxed
memory models, adding for example two full fences between the write resp. read
instructions. These fences are shown as→ff -edges in Figure 2.21a (cf. also [3]). The
candidate execution illustrates the impossibility of the observation r1 = 1 and r2 = 2
to the litmus test from Figure 2.17a with added fences. Channel communication is
the only synchronization primitive in our setting and, as we will see next, the effects
of the fences can be achieved through sends and receives.

p0 p1

n1:Wx = 1

n2:Wy = 1

n3:Ry = 1

n4:Rx = 0

ff

rf

ff

fr

(a) mp+ffences

p0 p1

n1:Wx = 1

n′2:c← 0

n′3:← c

n4:Rx = 0

hb

hb

hb

fr

(b) mp+chan

Figure 2.21: mp with synchronization

In Figure 2.21b, p0 updates the value of x, thereby shadowing its old value from
p0’s local perspective. The thread then sends a message on a channel.10 Since neg-
ative observability information (i.e., a thread’s shadow set) travels along channels,

9That is not to say that Go implementations will exhibit that behavior, just that it is consistent with
the specification.

10At this point the reader may be wondering why write to x and then send a message on a channel

50

the receiving thread p1 cannot read the stale value of x and will read the updated
value 1 instead. The example also showcases how our model leads us to think about
synchronization as restriction on observability. Rather than having write events
percolating through a memory hierarchy composed of buffers and caches, in our
semantics writes become visible immediately.

2.9 Limitations and future work

As seen, the semantics currently covers asynchronous writes, but only synchronous
reads. Load buffering, however, accounts for an important form of relaxation that
is present in many memory models, including that of Go. Therefore, the operation
model presented here is less relaxed than the one of Go. We are currently working on
adding read relaxation, which involves allowing control flow dependencies on read
events “in-transit,” meaning, branching on values that have not been retrieved from
memory yet. Thus, the semantics will have a flavor of speculative execution similar
to modern hardware. This will complicate the proof of conditional simulation.

On the other hand, our current model does support coRR behavior as illustrated
in the example of Section 2.5.4 and discussed in Section 2.8. This is in line with
the informal description of the Go memory model, even if coRR behavior may not
be exhibited by actual Go compilers. The fact that the semantics allows for coRR
behavior is not a problem to compiler writers. Complications can arise when the
language semantics is more restrictive than the underlying architecture, but typically
not the other way around. When emitting code to an architecture more relaxed than
the language, the compiler must insert synchronization primitives in order to support
its contract with the application programmer.

We believe that, once load buffering is incorporated, the augmented memory
model will be lax enough to be a superset of Go’s.11 It will be interesting, then, to
formally establish that relationship. As a mater of fact, one avenue of future work
involves analyzing the proposed memory model as a basis for compiler verification.
Similar to what CakeML is to ML [54], we envision the proposed semantics (once
load buffering has been incorporated) as a high level specification with a chain of
simulation relations towards more concrete operational semantics, all the way down
to an actual compiler implementation.

instead of simply sending the value of x itself over the channel? In general, the shared resource may not
be a single variable but a complex data structure. Take the example of a graphics pipeline with threads
operating on a frame buffer. The buffer can reside in shared memory while threads coordinate the work
by sending and receiving tokens on a channel.

11Perhaps the relation between Go’s memory model and our operational semantics can be solidified
by first translating the English specification to an axiomatic semantics and then proving a correspondence
between this semantics and the operational one.

51

2.10 Related work

There are numerous proposals for and investigations of weak and relaxed mem-
ory models [1, 65, 3]. One widely followed approach, called axiomatic, specifies
allowed behavior by defining various ordering relations on memory accesses and
synchronizing events. Go’s memory model [40] gives an informal impression of
that style of specification. Less frequent are operational formalizations.

Boudol and Petri [17] investigate a relaxed memory model for a calculus with
locks relying on concepts of rewriting theory. Unlike the presentation here, writes
are buffered in a hierarchy of fifo-buffers reflecting the syntactic tree structure of
configurations: immediately neighboring processors share one write buffer, neigh-
bors syntactically further apart share a write buffer closer to the shared global mem-
ory located at the root. The position of a redex in the configuration is used as thread
identifier and determines which buffers are shared. Consequently, parallel com-
position cannot be commutative and, therefore, terms cannot be interpreted up-to
congruence ≡ as in our case.

Zhang and Feng [104] use an abstract machine to operationally describe
a happens-before memory model. Different from us, they make use of event
buffers. Similar to us, they keep “older” write events to account for more than
one observable variable value. The paper does not, however, deal with channel
communication. Another operational semantics that uses histories of time-stamped,
past read/write events is given by Kang et al. [52]. In this semantics, threads can
promise future writes, and a reader acquires information on the writer’s view of
memory. Fences then synchronize global time-stamps on memory with thread-local
information. Bisimulation proofs mechanized in Coq show the correctness of
compilation to various architectures.

Pichon-Pharabod and Sewell [79] investigate an operational representation of
a weak memory model that avoids problems of the axiomatic candidate-execution
approach in addressing out-of-thin-air behavior. The semantics is studied in a cal-
culus featuring locks as well as relaxed atomic and non-atomic memory accesses.
Guerraoui et al. [45] introduce a “relaxed memory language” with an operational
semantics to enable reasoning about various relaxed memory models. Their aim is
to allow correctness arguments for software transactional memories implemented
on weak-memory hardware. Another operational semantics is that of Flanagan and
Freund [37], who present a weak memory model used as the basis for a race checker.
The model is not as weak as the official Java Memory Model (JMM) but weaker than
standard Java Virtual Machine implementations.

Much effort has been placed on Java and the JMM. In [62], Lochbihler points out
how several features of Java, including dynamic memory allocation, thread spawns
and joins, the wait-notify mechanisms, interruption, and infinite executions, interact
in subtle ways with the language’s memory model. Even though these features have
been studied in their own right, Lochbihler’s was the first paper to take their com-

52

bined effect into account. Many of the complications analyzed in the paper arise
from Java’s security architecture. It has been known that security can be compro-
mised when out-of-thin-air behavior is allowed. For example, out-of-thin-air may be
leveraged to forge a pointer to String's underlying char array, which is assumed
to be immutable for security reasons. Lochbihler shows, however, that security can
be compromised by data races even after eliminating out-of-thin-air behavior. In
contrast, the Go memory model does not preclude out-of-thin air behavior.

Demange et al. [26] formalize a weak semantics for Java using buffers. The
semantics is quite less relaxed than the official JMM specification, the goal being
to avoid the intricacies of the happens-before JMM and offer a firmer ground for
reasoning. The model is defined axiomatically and operationally and the equiva-
lence of the two formalizations is established. Jagadeesan et al. [49] present an
operational semantics for a relaxed memory model for a concurrent, object-oriented
language. The formalization is consistent with the official Java memory model JMM
for data-race free programs. The semantics deviates from JMM though; it is weaker
in that it allows more optimizations. Unlike our semantics, [49] allows speculative
executions while at the same time still avoiding out-of-thin observations.

Alrahman et al. [4] formalize a relaxed total-store order memory model with
fence and wait operations. They provide an implementation in Maude, a rewriting-
based executable framework that precedes K, and explore ways to mitigate state-
space explosion. Lange et al. [58] define a small calculus, dubbed MiGo or mini-
Go, featuring channels and thread creation. The formalization does not cover weak
memory. Instead, the paper uses a behavioral effect type system to analyze channel
communication.

2.11 Conclusion

This chapter presents an operational specification for a weak memory model with
channel communication as the prime means of synchronization. In it, we prove
the central guarantee that race-free programs behave sequentially consistently. The
our semantics is accompanied by an implementation in the K framework and by
several examples and test cases [29]. We plan to use the implementation towards the
verification of program properties such as data-race freedom. Also, as the semantics
is further relaxed, additional complications in the DRF-SC proof are likely to arise.
At that point, we expect the implementation in K to help us manage the proof.

The current weak semantics remembers past write events as part of the run-
time configuration, but does not remember read events. In Chapter 5 we present
further relaxations to the model by treating read events similar to the representation
of writes. This will allow us to accommodate load buffering behavior common to
relaxed memory models, including that of Go.

3Data-race detection and
the Go language

Data races are often discussed in the context of lock acquisition and release, with
race-detection algorithms routinely relying on vector clocks as a means of capturing
the relative ordering of events from different threads. In this chapter, we present
a data-race detector for a language with channel communication as its sole syn-
chronization primitive, and provide a semantics directly tied to the happens-before
relation, thus forging the notion of vector clocks.

3.1 Introduction

One way of dealing with complexity is by partitioning a system into cooperating
subcomponents. When these subcomponents compete for resources, coordination
becomes a prominent goal. One common programming paradigm is to have threads
cooperating around a pool of shared memory. In this case, coordination involves,
for example, avoiding conflicting accesses to memory. Two concurrent accesses
constitute a data race if they reference the same memory location and at least one
of the accesses is a write. Because data races can lead to counterintuitive behavior,
it is important to detect them.

The problem of data-race detection in shared memory systems is well studied
in the context of lock acquisition and release. When it comes to message passing,
the problem of concurrent accesses to channels, in the absence of shared memory,
is also well studied—the goal, in these cases, is to achieve determinism rather than
race-freedom [24, 25, 97]. What is less prominent in the race-detection literature
is the study of channel communication as the synchronization primitive for shared
memory systems. In this chapter, we present exactly that; a dynamic data-race de-
tector for a language in the style of Go, featuring channel communication as means
of coordinating accesses to shared memory.

We fix the syntax of our calculus in Section 3.3 and present a corresponding
operational semantics. The configurations of the semantics keep track of memory
events (i.e., of read and write accesses to shared variables) such that the semantics
can be used to detect races. A proper book-keeping of events also involves tracking
happens-before information. In the absence of a global clock, the happens-before
relation is a vehicle for reasoning about the relative order of execution of different
threads [56]. We describe the race detection task and present a framework, called
GRACE [31], that is based on what we call happens-before sets. Different from other
race detectors, which often employ vector clocks (VCs) as a mechanism for captur-

53

54

ing the happen-before relation, we tie our formalization more closely to the concept
of happens-before. The proposed approach, based on happens-before sets, allows
for garbage collection of “stale” memory access information that would otherwise
be tracked. Although, in the worst case, the proposed detector requires a larger foot-
print when compared to VC-based implementations, we conjecture the existence of
a hybrid approach that can offer benefits from both worlds.

Our race detector is built upon the work of Chapter 2, where we formalize a
weak memory model inspired by the Go specification [40]. The core of the work
was a proof of the DRF-SC guarantee, meaning, we proved that the proposed relaxed
memory model behaves Sequentially Consistently (SC) when running Data-Race
Free (DRF) programs. The proof hinges on the fact that, in the absence of races, all
threads agree on the contents of memory. The scaffolding used in the proof contains
the ingredients for the race detector presented in this chapter. We should point out,
however, that the operational semantics presented here and used for race detection
is not a weak semantics.1 Apart from the additional information for race detection,
the semantics is “strong” in that it formalizes a memory guaranteeing sequential
consistency. To focus on a form of strong memory is not a limitation. Since we
have established that a corresponding weak semantics enjoys the crucial DRF-SC
property [34], the strong and weak semantics agree up to the first encountered race
condition. Given that even racy program behaves sequentially consistently up to the
point in which the first data-race is encountered, a complete race detector can safely
operate under the assumption of sequential consistency.

The remainder of the chapter is organized as follows. Section 3.2 presents back-
ground information on data races and synchronization via message passing that are
directly related to the formalization of our approach to race detection. Section 3.3
formalizes race detection in the context of channel communication as sole synchro-
nization mechanism. We turn our attention to the issue of efficiency in Section 3.4.
Section 3.5 gives a detailed comparison of our algorithm and VC-based algorithms
for the acquire-release semantics. Section 3.6 puts our work in the perspective of
trace theory. Section 3.7 examines related work. Section 3.8 provides a conclusion
and touches on future work.

1Note that while the mentioned semantics of Chapter 2 differs from the one presented here, both
share some commonalities. Both representations are based on appropriately recording information of
previous read and write events in their run-time configuration. In both versions, a crucial ingredient of
the book-keeping is connecting events in happens-before relation. The purpose of the book-keeping of
events, however, is different: in Chapter 2, the happens-before relation serves to operationally formalize
the weak memory model (corresponding roughly to PSO) in the presence of channel communication. In
the current chapter, the same relation serves to obtain a race detector. Both versions of the semantics are
connected by the DRF-SC result, as mentioned.

55

3.2 Background

Read and write conflicts. Memory accesses conflict if they target the same loca-
tion and at least one of the accesses is a write—there are no read-read conflicts. A
data race constitutes of conflicting accesses that are unsynchronized.

Listing 3.1: Program with race condition. [40]
var a s t r i n g

func main () {
go func () { a = " h e l l o " } ()
p r i n t (a)

}

Take the Go code of Listing 3.1 as an example. There, the main function invokes
an anonymous function; this anonymous function sets the global variable “a” to
“hello”. Note, however, that the call is prepended with the keyword go. When this
keyword is present in a function invocation, Go spawns a new thread (or goroutine),
and the caller continues execution without waiting for the callee to return. The
main and the anonymous functions access the same shared variable in a conflicting
manner (i.e., one of the accesses is a write). Since both the main and the anonymous
functions run in parallel and no synchronization is used (as evidenced by the lack
of channel communication), the two accesses are also concurrent. This allows us to
conclude that this program has a race.

A data race manifests itself when an execution step is immediately followed by
another and the two steps are conflicting. This definition is the closest one can get
to a notion of simultaneity in an operational semantics, where memory interactions
are modeled as instantaneous atomic steps. While manifest races are obvious and
easy to account for, races in general can involve accesses that are arbitrarily far
apart in a linear execution. A “memory-less” detector can fail to report races, for
example non-manifest races, that could otherwise be flagged by more sophisticated
race detectors. The ability to flag non-manifest data-races is correlated with the
amount of information kept and the length in which this information is kept for. In
general, recording more information and storing it for longer leads to higher degrees
of “completeness” at the expense of higher run-time overheads.2

We break down the notions of read-write and write-write conflicts into a more
fine-grained distinction. Inspired by the notion of data hazards in the computer ar-
chitecture literature, we break down read-write conflicts into read-after-write (RaW)
and write-after-read (WaR) conflicts. To keep consistent with this nomenclature, we

2It should go without saying that observing an execution as being race free is not enough to assert
that the program is race free. Completeness can at best be expected with respect to alternative schedules
or linearizations of a given execution.

56

refer to write-write conflicts as write-after-write (WaW).3 Going back to the exam-
ple in Listing 3.1, there are two possible executions: one in which the spawned
goroutine writes “hello ” to the shared variable after the main function prints it, and
another execution in which the print occurs after the writing of the variable. The
first execution illustrates a write-after-read race, while the first illustrates a read-
after-write. Note that this example does not contain a write-after-write race.

We make the distinction between the detection of after-write races and the de-
tection of write-after-read ones. As we will see in Section 3.3.3, the detection of
after-write races can be done with little overhead. The detection of after-read, how-
ever, cannot.

When reading or writing a variable, it must be checked that conflicting accesses
happened-before the current access. The check must take place from the perspective
of the thread attempting the access. In other words, the question of whether an
event occurred in the “definite past” (i.e., whether an event is in happened-before
relation with “now”) is thread-local; threads can have different views on whether
an event belongs to the past. This thread-local nature is less surprising than it may
sound: if one threads executes two steps in sequence, the second step can safely
assume that the first has taken effect; after all, that is what the programmer must
have intended by sequentially composing instructions in the given program order.
Such guarantees hold locally, which is to say that the semantics respects program
order within a thread. It is possible, however, for steps to not take effect in program
order. A compiler or hardware may rearrange instructions, and they often do so in
practice. What must remain true is that these reorderings cannot be observable from
the perspective of a single thread. When it comes to more than one thread, however,
agreement on what constitutes the past cannot be achieved without synchronization.
Synchronization and consensus are integrally related.4 Specifically, given a thread t,
events from a different thread t ′ are not in the past of t unless synchronization forces
them to be.

Synchronization via bounded channels. In the calculus presented here, channel
communication is the only way in which threads synchronize. Channels can be cre-
ated dynamically and closed; they are also first-class data, which means channel
identifiers can be passed as arguments, stored in variables, and sent over channels.

3The mentioned “temporal” ordering and the use of the word “after” refers to the occurrence of
events in the trace or execution of the running program. It is incorrect to conflate the concept of happens-
before with the ordering of occurrences in a trace. For instance, in a RaW situation, the read step occurs
after a write in an execution, i.e., the read is mentioned after the write in the linearization. This order
of occurrence does not mean, however, that the read happens-after the write or, conversely, the write
happens-before the read. Actually, for a RaW race (same as for the other kinds of races), the read occurs
after the write but the accesses are concurrent, which means that they are unordered as far as the happens-
before relation is concerned.

4In the context of channel communication and weak memory, the connection between synchroniza-
tion and consensus is discussed in a precise manner in our previous work; see the consensus lemmas in
Section 2.6.

57

Send and receive operations are central to synchronization. Clearly, a receive state-
ment is synchronizing in that it is potentially blocking: a thread blocks when at-
tempting to receive from an empty channel until, if ever, a value is made available
by a sender. Since channels here are bounded, there is also potential for blocking
when sending, namely, when attempting to send on a channel that is full.

We can use a channel c to eliminate the data race in Listing 3.1 as follows: the
anonymous function sends a message to communicate that the shared variable has
been set. Meanwhile, the main thread receives from the channel before printing the
shared variable.

Listing 3.2: Repaired program.
var a s t r i n g
var c = make (chan bool , 1) ;

func main () {
go func () { a = " h e l l o " ; c <− t rue } ()
<− c
p r i n t (a)

}

The happens-before memory model stipulates, not surprisingly, a causal rela-
tionship between the communicating partners [40]:

A send on c happens-before the corresponding receive from c completes. (3.1)

Given that channels have finite capacity, a thread remains blocked when sending
on a full channel until, if ever, another process frees a slot in the channel’s buffer.
In other words, the sender is blocked until another thread receives from the channel.
Correspondingly, there is a happens-before relationship between a receive and a
subsequent send on a channel with capacity k [40]:

The ith receive from c happens-before the (i+ k)th send on c completes. (3.2)

Interestingly, because of this rule, a causal connection is forged between the sender
and some previous receiver who is otherwise unrelated to the current send operation.
When multiple senders and receivers share a channel, rule (3.2) implies that it is
possible for two threads to become related (via happens-before) without ever directly
exchanging a message.5

The indirect relation between a sender and a prior receiver, postulated by
rule (3.2), allows channels to be used as locks. In fact, free and taken binary

5Communication means sending a message to or receiving a message from a channel; messages
are not addressed to or received from specific threads. Thus, sharing the channel by performing sends
and receives does not necessarily make two threads “communication partners.” Two threads are partners
when one receives a message deposited by the other.

58

locks are analogous to empty and full channels of capacity one. A process takes
and releases locks for the purpose of synchronization (such as assuring mutually
exclusive access to shared data) without being aware of “synchronization partners.”
In the (mis-)use of channels as locks, there is also no inter-process communication.
Instead, a process “communicates” with itself: In a proper lock protocol, the
process holding a lock (i.e., having performed a send onto a channel) is the only
one supposed to release the lock (i.e., performing the corresponding receive). Thus,
a process using a channel as lock receives its own previously sent message—there
is no direct inter-process exchange. Note, however, synchronization still occurs:
subsequent accesses to a critical region are denied by sending onto a channel and
making it full. See Section 3.3.5.2 for a more technical elaboration.

To establish a happens-before relation between sends and receives, note the
distinction, between a channel operation and its completion in the formulation of
rules (3.1) and (3.2). The order of events in a concurrent system is partial; not only
that, it is strictly partial since we don’t think of an event as happening-before itself.
A strict partial order is an irreflexive, transitive, and asymmetric relation. In the case
of synchronous channels, if we were to ignore the distinction between an event and
its completion, according to rule (3.1), a send would then happen-before its corre-
sponding receive, and, according to rule (3.2), the receive would happen-before the
send. This cycle breaks asymmetry. Asymmetry can be repaired by interpreting a
send/receive pair on a synchronous channel as a single operation; indeed, it can be
interpreted as a rendezvous.

The distinction between a channel operation and its completion is arguably more
impactful when it comes to buffered channels. For one, it prevents sends from be-
ing in happens-before with other sends, and receives from being in happens-before
with other receives. To illustrate, let sdi and rvi represent the ith send and receive
on a channel. If we remove from rules (3.1) and (3.2) the distinction between an
operation and its completion, the ith receive would then happens-before the (i+ k)th

send—based on rule (3.2)—and the (i+k)th send would happens-before the (i+k)th

receive—based on rule (3.1):

rvi →hb sd
i+k →hb rv

i+k

By transitivity of the happens-before relation, we would then conclude that the ith re-
ceive happens-before the (i+k)th receive, which would happen-before the (i+2k)th

receive and so on. As a consequence, a receive operation would have a lingering ef-
fect through-out the execution of the program—similarly for send operations. This
accumulation of effects can be counterintuitive for the application programmer, who
would be forced to reason about arbitrarily long histories.

59

3.3 Data-race detection

We start in Section 3.3.1 by presenting the abstract syntax of our calculus and, in
Section 3.3.2, an overview of the operational semantics used for data-race detection.
The race detector itself is introduced incrementally. We start in Section 3.3.3 with a
simple detector that has a small footprint but that is limited to detecting after-write
races. We build onto this first iteration of the detector in Section 3.3.4, making it
capable of detecting after-write as well as after-read races. The detector’s operation
is illustrated by examples in Section 3.3.5. Later, in Section 3.4, we turn to the issue
of efficiency and introduce “garbage collection” as a means to reduce the detector’s
footprint. These race detectors can be seen as augmented versions of an underlying
semantics without additional book-keeping related to race checking. This “undeco-
rated” semantics, including the definition of internal steps and a notion of structural
congruence, can be found in Section 2.4 .

3.3.1 A calculus with shared variables and channel communication

We formalize our ideas in terms of an idealized language shown in Figure 3.1 and
inspired by the Go programming language. The syntax is basically unchanged from

v ::= r | n values
e ::= t | v | load z | z := v | go t expressions

| if v then t else t
| make (chan T,v) | ← v | v← v | close v

g ::= v← v | ← v | default guards
t ::= let r = e in t | ∑i let ri = gi in ti threads

Figure 3.1: Abstract syntax

the previous chapter. Values v can be of two forms: r denotes local variables or
registers; n is used to denote references or names in general and, in specific, p for
processes or goroutines, m for memory events, and c for channel names. We do not
explicitly list values such as the unit value, booleans, integers, etc. We also omit
compound local expressions like e1 + e2. Shared variables are denoted by x, z, etc.,
load z represents reading the shared variable z into the thread, and z := v denotes
writing to z. References are dynamically created. A new channel is created by
make (chan T,v), where T represents the type of values carried by the channel and
v a non-negative integer specifying the channel’s capacity. Sending a value v over
a channel c and receiving a value as input from a channel are denoted respectively
as c← v and← c. After the operation close, no further values can be sent on the
specified channel. Attempting to send values on a closed channel leads to a panic.

60

Starting a new asynchronous activity, called goroutine in Go, is done using
the go-keyword. In Go, the go-statement is applied to function calls only. We
omit function calls, asynchronous or otherwise, as they are orthogonal to the mem-
ory model’s formalization. The select-statement, here written using the ∑-symbol,
consists of a finite set of branches (or communication clauses in Go-terminology).
These branches act as guarded threads. General expressions in Go can serve as
guards. Our syntax requires that only communication statements (i.e., channel send-
ing and receiving) and the default-keyword can serve as guards. This does not
reduce expressivity and corresponds to an A-normal form representation [89]. At
most one branch is guarded by default in each select-statement. The same chan-
nel can be mentioned in more than one guard. “Mixed choices” [77, 78] are also
allowed, meaning that sending- and receiving-guards can both be used in the same
select-statement. We use stop as syntactic sugar for the empty select statement; it
represents a permanently blocked thread. The stop-thread is also the only way to
syntactically “terminate” a thread, meaning that it is the only element of t without
syntactic sub-terms.

The let-construct let r = e in t combines sequential composition and scoping
for local variables r. After evaluating e, the rest t is evaluated where the resulting
value of e is handed over using r. The let-construct acts as a binder for variable r in
t. When r does not occur free in t, let boils down to sequential composition and,
therefore, is more conveniently written with a semicolon. See also Figure 2.3 on
page 21 for syntactic sugar.

3.3.2 Overview of the operational semantics

To capture the notion of ordering of events between threads, an otherwise unadorned
operational semantics, equation (2.5), is equipped with additional information: each
thread and memory location tracks the events it is aware of as having happened-
before—these events are stored in what we call the happens-before set, Ehb. De-
pending on the capabilities of the race detector, slightly different information is
tracked as having happened-before (i.e., stored in a happens-before set).

3.3.2.1 After-write races

When detecting after-write races (i.e., RaW and WaW), in order to know whether a
subsequent access to the same variable occurs without proper synchronization, one
has to remember additional information concerning past write-events. Specifically,
it must be checked that all write events to the same variable happened-before the
current access. The happens-before set is then used to store information pertaining
to write events; read events are not tracked. Also, terms representing a memory
location have a different shape when compared to the undecorated semantics. In the
undecorated semantics, the content v of a variable z is written as a pair (|z:=v|). When
after-write races come into play, it is not enough to store the last value written to each

61

variable; we also need to identify write events associated with the variable. Thus,
an entry in memory takes the form (|Ehb, z:=v|) where Ehb holds identifiers m, m′,
etc. that uniquely identify write events to z—contrast the run-time configurations in
equation (2.5), and (3.3). The number of prior write events that need to be tracked
can be reduced for the sake of efficiency, in which case the term representing a
memory location takes the form m(|Er

hb, z:=v|) where m is the identifier of the most
recent write to z. See equation (3.4).

3.3.2.2 Write-after-read races

Besides the detailed coverage of RaW and WaW races in Section 3.3.3, we describe
the detection of write-after-read races in Section 3.3.4. When it comes to WaR,
the race checker needs to remember information about past reads in addition to past
write events. Abstractly, a read event represents the fact that a load-statement has
executed. Thus, the set Ehb of an entry (|Ehb, z:=v|) in memory holds identifiers of
both read and write events.

In the strong semantics, a read always observes one definite value which is the
result of one particular write event. Therefore, the configuration contains entries of
the form m(|Er

hb, z:=v|) where m is the identifier of the “last” write event and Er
hb is

a set of identifiers of read events, namely those that accumulated after m. Note that
“records” of the form m(|Er

hb, z:=v|) can be seen as n+1 recorded events, one write
event together with n≥ 0 read-events. This definition of records with one write per
variable stands in contrast to a weak semantics, where many different write events
may be observable by a given read [34].

3.3.2.3 Synchronization

Channel communication propagates happens-before information between threads,
and thus, affects synchronization. In the operational rules, each channel c is actu-
ally realized with two channels, which we refer to as forward, c f , and backward,
cb—see Figure 3.4. The forward part serves to communicate a value transmitted
from a sender to a receiver; it also stipulates a causal relationship between the com-
municating partners [40]—see rule (3.1) of page 57. To capture this relationship in
the context of race checking, the sender also communicates its current information
about the happens-before relation to the receiver. The communication of happens-
before information is accomplished by the transmission of Ehb over channels; see
rule R-REC in Figure 3.4.

The memory model also stipulates a happens-before relationship between a re-
ceive and a subsequent send on a channel with capacity k—see rule (3.2) of page 57.
While we refer to the forward channel as carrying a message from a sender to a re-
ceiver, the backward part of the channel is used to model the indirect connection
between some prior receiver and a current sender; see R-SEND in Figure 3.4.

62

The interplay between forward and backward channels can also be understood
as a form of flow control. Entries in the backward channel’s queue are not values
deposited by threads. Instead, they can be seen as tickets that grant senders a free
slot in the communication channel, i.e., the forward channel.6 Thus, the number of
“messages” in the backward channel capture the notion of fullness: a channel is full
if the backward channel is empty. See rule R-SEND in Figure 3.4 or Figure 2.8 for
the underlying semantics without race checking. When a channel of capacity k is
created, the forward queue is empty and the backward queue is initialized so that it
contains dummy elements Ehb⊥ (cf. rule R-MAKE). The dummy elements represent
the number of empty or free slots in the channel. Upon creation, the number of
dummy elements equals the capacity of the channel.

As discussed in Section 3.2, there is a distinction between a synchronization
operation and its completion. A send/receive pair on a synchronous channel can be
seen as a rendezvous operation; captured in our semantics by the R-REND reduction
rule of Figure 3.4. When it comes to asynchronous communication, the distinction
between a channel operation and its completion is handled by the fact that send and
receive operations update a thread’s local state but do not immediately transmit the
updated state onto the channel—see rules R-SEND and R-REC in Figure 3.4.

3.3.3 Detecting read-after-write (RaW) and write-after-write
(WaW) races

To detect “after-write” races, run-time configurations are given following syntax:

R ::= p⟨Ehb, t⟩ | (|Ez
hb, z:=v|) | • | R ∥ R | c[q] | νn R . (3.3)

Configurations are considered up-to structural congruence, with the empty con-
figuration • as neutral element and ∥ as associative and commutative—similar to the
configurations described on Sections 2.4 and 2.5.

In the configurations, a triple (|Ez
hb, z:=v|) not only stores the current value of z

but also records the unique identifiers m, m′, etc of every write event to z in Ez
hb.7 A

6In the case of lossy channels, backward channels are sometimes used for the purpose of error
control and regulating message retransmissions, where the receiver of messages informs the sender about
the successful or also non-successful reception of a message. Here, channels are assumed non-lossy
and there is no need for error control. In that sense, the term “backward” should not be interpreted as
communication back to the receiver in the form of an acknowledgment.

7We will later use the term “event” also when talking about histories or traces. There, events carry
slightly different information. For instance, being interested in the question whether a history contains
evidence of a race, it won’t be necessary to mention the actual value being written in the write event in
the history. Both notions of events, of course, hang closely together. It should be clear from the context
whether we are referring to events as part of a linear history or recorded as part of the configuration.
When being precise, we refer to a configuration event as recorded event. Since recorded events in the
semantics are uniquely labeled, we also allow ourselves to use words like “event m” even if m is just the
identifier for the recorded event m(|z:=v|).

63

write to memory updates a variable’s value and also generates a fresh identifier m.
In order to record the write event, the tuple (m, !z) is placed in the happens-before
set of the term representing the memory location that has been written to. The initial
configuration starts with one write-event per variable and the semantics maintains
this uniqueness as an invariant. In effect, the collection of recorded write events
behave as a mapping from variable to values.8

A thread t is represented as p⟨Ehb, t⟩ at run-time, with p serving as identifier.
To be able to determine whether a next action should be flagged as race or not, a
goroutine keeps track of happens-before information corresponding to past write
events. An event mentioned in Ehb is an event of the past, as opposed to being an
event that simply occurred in a prior step. An event is “concurrent” if it occurred
in a prior step but is not in happens-before relation with the current thread state.
Concurrent memory events are potentially in conflict with a thread’s next step. More
precisely, if the memory record (|Ez

hb, z:=v|) is part of the configuration, then it is safe
for thread p⟨Ehb, t⟩ to write to z if Ez

hb ⊆ Ehb. Otherwise, there exists a write to z that
is not accounted for by thread p and a WaW conflict is raised. Similar when reading
from a variable.

Data-races are marked as a transition to an exception E—see the derivation rules
of Figure 3.3, and, when write-after-read races are considered, Figure 3.7. The ex-
ception takes as argument a set containing the prior memory operations that conflict
and are concurrent with the attempted memory access.

Ez
hb ⊆ Ehb fresh(m′) E ′hb = {(m

′, !z)}∪Ehb E ′zhb = {(m
′, !z)}∪Ez

hb R-WRITE
p⟨Ehb,z := v′; t⟩ ∥ (|Ez

hb, z:=v|)−→ p⟨E ′hb, t⟩ ∥ (|E
′z
hb, z:=v′|)

Ez
hb ⊆ Ehb

R-READ
p⟨Ehb,let r = load z in t⟩ ∥ (|Ez

hb, z:=v|)−→ p⟨Ehb,let r = v in t⟩ ∥ (|Ez
hb, z:=v|)

Figure 3.2: Operational semantics augmented for RaW and WaW race detection

Goroutines synchronize via message passing, which means that channel com-
munication must transfer happens-before information between goroutines. Suppose
a goroutine p has just updated variable z thus generating the unique label m. The
tuple (m, !z) is placed in the happens-before set of both the thread p and the memory
record associated with z. At this point, p is the only goroutine whose happens-before
set contains the label m associated with this write-record. No other goroutine can
read or write to z without causing a data-race. When p sends a message onto a
channel, the information about m is also sent. Suppose now that a thread p′ reads
from the channel and receives the corresponding message before p makes any fur-

8The fact that memory behaves like a mapping is consistent with the strong memory assumption.

64

Ez
hb ̸⊆ Ehb

R-WRITE-EWaW
p⟨Ehb,z := v′; t⟩ ∥ (|Ez

hb, z:=v|)−→ E
(
Ez

hb−Ehb
)

Ez
hb ̸⊆ Ehb

R-READ-ERaW
p⟨Ehb,let r = load z in t⟩ ∥ (|Ez

hb, z:=v|)−→ E
(
Ez

hb−Ehb
)

Figure 3.3: Exception conditions for RaW and WaW data-race detection

ther modifications to z. The tuple (m, !z) is added to p′’s happens-before set, so
both p and p′ are aware of z’s most recent write to z. The existence of m in both
goroutine’s happens-before sets implies that either p or p′ are allowed to update
z’s value. The rules for channel communication are given in Figure 3.4. They will
remain unchanged when we extend the treatment to RaW conflicts. The exchange
of happens-before information via channel communication is also analogous to the
treatment of the weak semantics in Chapter 2.

As Chapter 2, “the R-CLOSE rule closes both sync and async channels. Execut-
ing a receive on a closed channel results in receiving the end-of-transmission marker
⊥ (cf. rule R-REC⊥) and updating the local state Ehb in the same way as when re-
ceiving a properly sent value. The “value”⊥ is not removed from the queue, so that
all clients attempting to receive from the closed channel obtain the communicated
happens-before synchronization information.”

Finally, goroutine creation is a synchronizing operation where the child, who is
given a unique identifier p′, inherits the happens-before set from the parent—see the
R-GO rule in Figure 3.5.

3.3.4 Detecting write-after-read (WaR) races

In the previous section, the detection of read-after-write and write-after-write races
required happens-before sets to contain write labels only. The detection of write-
after-read races requires recording read labels, as well. A successful read of variable
z causes a fresh read label, say m′, to be generated. The pair (m′,?z) is added to the
reader’s happens-before set as well as to the record associated with z in memory—
see the rule R-READ of Figure 3.6.

In order for a write to memory to be successful, the writing thread must not
only be aware of previous write events to a given shared variable, but must also
account for all accumulated reads to the variable. A write-after-read data-race is
raised when a write is attempted by a thread and the thread is unaware of some
previous reads to z. In other words, there exist some read-label in the happens-
before set associated with the variable’s record, say r ∈ Ez

hb ↓?, that is not in the
thread’s happen-before set, r /∈ Ehb. The projection ↓? essentially filters out write

65

q = [Ehb⊥, . . . ,Ehb⊥] |q |= v fresh(c)
R-MAKE

p⟨Ehb,let r = make (chan T,v) in t⟩ −→ νc (p⟨Ehb,let r = c in t⟩ ∥ c f [] ∥ cb[q])

¬closed(c f [q2]) E ′hb = Ehb +E ′′hb R-SEND
cb[q1 :: E ′′hb] ∥ p⟨Ehb,c← v; t⟩ ∥ c f [q2] −→ cb[q1] ∥ p⟨E ′hb, t⟩ ∥ c f [(v,Ehb) :: q2]

v ̸=⊥ E ′hb = Ehb +E ′′hb R-REC
cb[q1] ∥ p⟨Ehb,let r =← c in t⟩ ∥ c f [q2 :: (v,E ′′hb)] −→

cb[Ehb :: q1] ∥ p⟨E ′hb,let r = v in t⟩ ∥ c f [q2]

E ′hb = Ehb +E ′′hb R-REC⊥
p⟨Ehb,let r =← c in t⟩ ∥ c f [(⊥,E ′′hb)] −→ p⟨E ′hb,let r =⊥ in t⟩ ∥ c f [(⊥,E ′′hb)]

E ′hb = Ehb1 +Ehb2
R-REND

cb[] ∥ p1⟨Ehb1,c← v; t⟩ ∥ p2⟨Ehb2,let r =← c in t2⟩ ∥ c f [] −→
cb[] ∥ p1⟨E ′hb, t⟩ ∥ p2⟨E ′hb,let r = v in t2⟩ ∥ c f []

¬closed(c f [q])
R-CLOSE

p⟨Ehb,close (c); t⟩ ∥ c f [q] −→ p⟨Ehb, t⟩ ∥ c f [(⊥,Ehb) :: q]

Figure 3.4: Operational semantics augmented for race detection: channel communi-
cation

fresh(p′)
R-GO

p⟨Ehb,go t ′; t⟩ −→ ν p′ (p′⟨Ehb, t
′⟩) ∥ p⟨Ehb, t⟩

Figure 3.5: Operational semantics augmented for race detection: thread creation

events from the happens-before set. Under these circumstances, the precondition
Ez

hb ↓?⊈ Ehb of the R-WRITE-EWaR rule is met and a race is reported.
Compared to the detector of Section 3.3.3, rule R-WRITE-EWaW is augmented

with the precondition Ez
hb ↓?⊆ Ehb. Without this precondition, there would be non-

determinism when reporting WaW and WaR races.9 Note, however, that when both

9Consider the scenario in which p writes to and then reads from the shared variable z. Say the write to
z generates a label w and the read generates r. If a thread p′ attempts to write to z without first communi-
cating with p, p′ will not be aware of the prior read and write events. In other words, the happens-before
set of p′ will contain neither (w, !z) nor (r,?z). Both rules R-WRITE-EWaW and R-WRITE-EWaR are

66

Ez
hb ⊆ Ehb fresh(m′) E ′hb = {(m

′, !z)}∪Ehb E ′zhb = {(m
′, !z)}∪Ez

hb R-WRITE
p⟨Ehb,z := v′; t⟩ ∥ (|Ez

hb, z:=v|)−→ p⟨E ′hb, t⟩ ∥ (|E
′z
hb, z:=v′|)

Ez
hb ↓!⊆ Ehb fresh(m′) E ′hb = {(m

′,?z)}∪Ehb E ′rhb = {(m
′,?z)}∪Er

hb R-READ
p⟨Ehb,let r = load z in t⟩ ∥ (|Ez

hb, z:=v|)−→ p⟨E ′hb,let r = v in t⟩ ∥ (|E ′zhb, z:=v|)

Figure 3.6: Operational semantics augmented for data-race detection

Ez
hb ̸⊆ Ehb Ez

hb ↓?⊆ Ehb
R-WRITE-EWaW

p⟨Ehb,z := v′; t⟩ ∥ (|Ez
hb, z:=v|)−→ E

(
Ez

hb−Ehb
)

Ez
hb ↓?⊈ Ehb

R-WRITE-EWaR
p⟨Ehb,z := v′; t⟩ ∥ (|Ez

hb, z:=v|)−→ E(Er
hb−Ehb)

Ez
hb ↓! ̸⊆ Ehb

R-READ-ERaW
p⟨Ehb,let r = load z in t⟩ ∥ (|Ez

hb, z:=v|)−→ E
(
Ez

hb−Ehb
)

Figure 3.7: Exception conditions for WaR data-race detection

WaW and WaR apply, the read in the WaR race happens-after the write involved
in the WaW race. We favor to resolve this non-determinism and to report the most
recent conflict.

The detector presented here can flag all races: read-after-write, write-after-write,
and write-after-read. In Section 3.4 we also make the detector efficient by “garbage
collecting” stale information. But before then, let us look at a couple of examples
that illustrate the detector’s operation.

3.3.5 Examples

We will look at two examples of properly synchronized programs. The first is a
typical usage of channel communication; one in which an action is placed in the
past of another. The second example relies on mutual exclusion instead. In this
case, we know that actions are not concurrent, but we cannot infer an order between

enabled in this case. However, the read happens-after the write that generated (w, !z).

67

them. By contrasting the two examples in Section 3.3.5.3, we derive observations
related to determinism and constructivism.

3.3.5.1 Message passing

Message passing, depicted in Figure 3.8, involves a producer writing to a shared
variable and notifying another thread by sending a message onto a channel. A con-
sumer receives from the channel and reads from the shared variable.

p1⟨Ehb1,z := 42; c← 0⟩
p2⟨Ehb2,← c; load z⟩

Figure 3.8: Message passing example.

The access to the shared variable is properly synchronized. Given the operational
semantics presented in this chapter, we can arrive at this conclusion as follows. A
fresh label, say m, is generated when p1 writes to z. The memory record involving
z is updated with this fresh label, and the pair (m, !z) is placed into p1’s happens-
before set, thus yielding Ehb

′
1. A send onto c sends not only the message value, 0 in

this case, but also the happens-before set of the sender, Ehb
′
1, see rule R-SEND. The

act of receiving from c blocks until a message is available. When a message becomes
available, the receiving thread receives not only a value but also the happens-before
set of the sender at the time that the send took place, see rule R-REC. Thus, upon re-
ceiving from c, p2’s happens-before set is updated to contain (m, !z). Receiving from
the channel places the writing to z by p1 into p2’s definite past. The race-checker
makes sure of this fact by inspecting p2’s happens-before set when p2 attempts to
load from z. In other words, the race-checker checks that the current labels asso-
ciated with z in the configuration are also present in the happens-before set of the
thread performing the load.

The message passing example illustrates synchronization as imposing of an or-
der between events belonging to different threads. The message places the pro-
ducer’s write in the past of the consumer’s read. Next, we will look into an example
in which synchronization is achieve via mutual exclusion. Two threads, p1 and p2,
are competing to write to the same variable. We will not be able to determine which
write happens-before the other. Even though we cannot infer the order, we can deter-
mine that a happens-before order exists and, therefore, that the program is properly
synchronized.

3.3.5.2 Mutual exclusion

Figure 3.9 shows a typical mutual exclusion scenario. It involves two threads writing
to a shared variable z. Before writing, a thread sends a message onto a channel c

68

which capacity |c |= 1. After writing, it receives from c.10

p1⟨c← 0; z := 17; ← c⟩
p2⟨c← 0; z := 42; ← c⟩

Figure 3.9: Mutual exclusion example.

A send and its corresponding receive do not directly contribute to synchroniza-
tion in this example. The send is matched by a receive from the same thread; noth-
ing new is learned from this exchange. To illustrate this point, which may come as
a surprise, let us look at an execution. Say p1 is the first to send 0 onto c. Then
p1’s happens-before set Ehb1 is placed onto the channel along with the value of 0.
The thread then proceeds to write to z, which generates a fresh label, say m′; the
pair (m′, !z) is placed on p1’s happens-before set. When receiving from c, p1 does
not learn anything new! It receives the message 0 and a “stale” happens-before set
Ehb1. The receiver’s happens-before set, Ehb

′
1, is updated to incorporate the stale

happens-before set, but this “update” causes no effective change:

Ehb
′
1∪Ehb1 = (Ehb1∪{(m′, !z)})∪Ehb1

= Ehb1∪{(m′, !z)}
= Ehb

′
1

The explanation for why the program is synchronized, in this case, is more sub-
tle. It involves reasoning about the channel’s capacity. Recall that, according to
rule (3.2) on page 57, the ith receive from a channel with capacity k happens before
the (i+ k)th send onto the channel completes. Since channel capacity is 1 in our
example, rule (3.2) implies that the first receive from the channel happens-before
the second send completes. If p1 is the first to write to z, then p1 is also the first to
receive from c. Receiving from c places p1’s happens-before set onto the backward
channel (see rule R-REC). This happens-before set contains the entry (m′, !z) regis-
tering p1’s write to z. Upon sending onto c, p2 receives from the backward channel
and learns of p1’s previous write. Thus, by the time p2 writes to z, the write by p1
has been-placed onto p2’s definite past. Since no concurrent accesses exist, the race
checker does not flag this execution as racy.

10Note that the channel is being used as a semaphore [27]. Sending on the channel is analogous to
a semaphore wait or P operation. Receive is analogous to signal or V. The wait decrements the value
of the semaphore and, if the new value is negative, the process executing the wait is blocked. A signal
increments the value of the semaphore variable, thus allowing another process (potentially coming from
the pool of previously blocked processes) to resume. Similarly, a send operation decrements the number
of available slots in the channel’s queue, while a receive increments it. Sending on a channel with
capacity 1 can only take place if the channel is empty; meaning, all previous sends are matched with a
corresponding receive.

69

Similarly, p2 could first send onto c and write to z. The argument for the proper
synchronization of this alternate run would proceed in the same way. Therefore,
even though it is not possible to infer who, among p1 and p2, writes to z first, we
know that one of the writes is in a happens-before relation with the other. This
knowledge is enough for us to conclude that the program is properly synchronized.

This example shows that channels are excessively powerful when it comes to
implementing mutual exclusion, as evidenced by the fact that the forward queue
associated with the channel is not utilized. When it comes to mutual exclusion, a
more parsimonious synchronization mechanism suffices. Indeed, the acquire and
release semantics associated with locks is a perfect fit. When acquiring a lock, a
thread learns about the memory operations that precede the lock’s release. In other
words, memory operations preceding a lock’s release are put in happens-before with
respect to a thread that acquires the lock. Assuming a lock l starts with empty
happens-before information, say l[/0], the rules ACQUIRE and RELEASE capture a
lock’s behavior.

E ′hb = Ehb∪E ′′hb ACQUIRE
p⟨Ehb,acq (l); t⟩ ∥ l[E ′′hb] −→ p⟨E ′hb, t⟩ ∥ l[]

E ′hb = Ehb∪E ′′hb RELEASE
p⟨Ehb,rel (l); t⟩ ∥ l[] −→ p⟨Ehb, t⟩ ∥ l[E ′hb]

Note that an acquired lock, represented by l[], cannot be re-acquired without a
prior release, and that a released lock, meaning l[Ehb], cannot re-released without
a prior acquire.11 While a thread’s happens-before is updated on both sends and
receives, with locks, only the acquisition updates a thread’s happens-before infor-
mation. Surrounding code with a call to acquire at the beginning and release at the
end is sufficient for ensuring mutual exclusion. The full generality of channels is
not required.

3.3.5.3 Determinism, confluence, and synchronization

In the message passing example of Section 3.3.5.1, we are able to give a constructive
proof-sketch of the synchronization between p1 and p2; the “proof” puts an event
from p1 in the past of p2. In the mutual exclusion example of Section 3.3.5.2, no
such guarantee is possible. Instead, we give a non-constructive “proof” that p1 and

11When releases are matched by an prior acquire from the same thread, then happens-before informa-
tion accumulates monotonically, meaning, a thread learns about all previous releases, not just the most
recently occurring one.

70

p2 are synchronized by arguing that either p1’s actions are in the past of p2’s or vice
versa. The law of excluded middle is used in this non-constructive argument.

The absence of constructivism is tied to the absence of determinism. While in
the message passing example the program is deterministic, in the mutual exclusion
example it is not. There is no data race in the mutual exclusion example, but there
is still a “race” insofar as the two threads compete for access to a shared resource.
The resource, in this case, is the channel, which is being used as a lock. The two
threads race towards acquiring the lock (i.e., sending onto the channel) first. The
initial configuration has two transitions, one in which p1 acquires the lock first and
one in which p2 does. These transitions are non-confluent.

When it comes to reasoning about programs that model hardware, the lack of
constructivism and the non-confluence in the use of channels as locks is a hindrance.
Deterministic languages and constructive logics are needed in order to rule out sce-
narios in which two logic gates attempt to drive the same via with different logic
values (i.e., a short circuit) [12]. In the case of channel communication and in the
absence of shared memory, determinism can be achieved by enforcing ownership on
channels; for example, by making sure a single thread can read and a single thread
can write on a given channel at any given point in the execution [?]. It is possible for
the ownership on channels to be passed around the threads in a way that preserves
determinism [97].

The examples show that the absence of absence of data races is not enough to
ensure determinism. In general, however, determinism is not a requirement. Many
applications require “only” data-race freedom.

3.4 Efficient data-race detection

We have been gradually introducing a data-race checker. In Section 3.3.3, we pre-
sented a simple checker that flags after-write races (WaW and RaW) but is not
equipped for write-after-read (WaR) detection. In Section 3.3.4, we augmented the
detector to handle WaR. Here, we discuss how these detectors can be implemented
efficiently; where efficiency is gained by employing “garbage collection” to reduce
the detector’s memory footprint. Note that keeping one record per variable is already
a form of efficiency gain. In a relaxed memory model, since there may be more than
one value associated with a variable at any point in the execution, one might keep
one record per memory event [34]. The first step towards a smaller footprint is to
realize that, if the underlying memory model supports the DRF-SC guarantee, a
data-race detector can be built assuming sequential consistency. The reason being
that, when a data race is flagged, execution stops at the point in which the weak and
strong memory models’ executions would diverge.

Knowing that memory events can overtake each other, in this section we discuss
how stale or redundant information can be garbage collected. More precisely, we

71

show how to garbage collect the data structures that hold happens-before informa-
tion, that is, the thread-local happens-before set and the per-memory-location one.

3.4.1 Most recent write

Terms representing a memory location have taken different shapes when compared
to the undecorated semantics. In the undecorated semantics, the content v of a vari-
able z is written as a pair (|z:=v|). For after-write race detection, an entry in memory
took the form of (|Ehb, z:=v|) with Ehb holding information about prior write events.
Our first optimization comes from realizing that we do not need to keep a set of
prior write events. We can record only the most recent write and still be able to
flag all after-write racy executions. With this optimization, we may fail to report all
accesses involved in the race, but we will still be able to report the execution as racy
and to flag the most recent conflicting write event. This optimization is significant;
it reduces the arbitrarily large set of prior write events to a single point.

An intuitive argument for the correctness of the optimization comes from notic-
ing that a successful write to a variable can be interpreted as the writing thread taking
ownership of the variable. Suppose a goroutine p has just updated variable z. At this
point, p is the only goroutine whose happens-before set contains the label, say m,
associated with this write-record. The placement of the new label into p’s happens-
before set can be seen as recording p’s ownership of the variable: a data-race is
flagged if any other thread attempts to read or write to z without first synchronizing
with p—see the check (m, !z) ∈ Ehb in the premise of the R-WRITE and R-READ
rules of Figure 3.10.

When p sends a message onto a channel, the information about m is also sent.
Suppose now that a thread p′ reads from the channel and receives the corresponding
message before p makes any further modifications to z. The tuple (m, !z) containing
the write-record’s label is added to p′’s happens-before set. Now both p and p′ are
aware of z’s most recent write to z. The existence of m in both goroutine’s happens-
before sets imply that either p or p′ are allowed to update z’s value. We can think of
the two goroutines as sharing z. Among p and p′, whoever updates z first (re)gains
the exclusive rights to z.

It may be worth making a parallel with hardware and cache coherence proto-
cols. Given the derivation rules, we can write a race detector as a state machine.
Compared to the Modified-Exclusive-Shared-Invalid protocol (MESI), our seman-
tics does not have the modified state: all changes to a variable are immediately re-
flected in the configuration, there is no memory hierarchy in the memory model. As
hinted above, the other states can be interpreted as follows: If the label of the most
recent write to a variable is only recorded in one goroutine’s happens-before set,
then we can think of the goroutine as having exclusive rights to the variable. When
a number of goroutines contain the pair (m, !z) in their happen-before set with m
being the label of the most recent write, then these goroutines can be thought to be

72

sharing the variable. Other goroutines that are unaware of the most recent write can
be said to hold invalid data.

3.4.2 Runtime configuration and memory related reduction rules

Given the “most recent write” optimization above, and, if we were satisfied with
after-write conflicts, an entry in memory would take the form of m(|z:=v|), with the
label m uniquely identifying the event associated with v having been stored into
z. Being able to flag after-write but not write-after-read races may be an adequate
trade-off between completeness and efficiency. By not having to record read events,
a simplified detector tailored for after-write race detection has a much smaller foot-
print than when read-after-write conflicts are also taken into account. Besides, a
write-after-read race that is not flagged in an execution may realize itself as a read-
after-write race in another run, and then be flagged by the simplified detector.12

In contrast, the detection of write-after-read races requires more book-keeping:
we need read- in addition to write-labels. This addition is required because a WaR
conflict can ensue between an attempted write and any previous unsynchronized
read to the same variable. Therefore, the race-checker is made to remember all such
potentially troublesome reads.13 The runtime configuration is thus modified, this
time as to contain entries of the form m(|Er

hb, z:=v|). The label m identifies of the
most recent write event to z and the set Er

hb holds-read event identifiers, namely, the
identifiers of reads that accumulated after m.

R ::= p⟨Ehb, t⟩ | m(|Er
hb, z:=v|) | • | R ∥ R | c[q] | νn R . (3.4)

Note that records of the form m(|Er
hb, z:=v|) can be seen as n+ 1 recorded events:

one write together with n≥ 0 read events.
The formal semantics maintains the following invariants. First, the happens-

before information Er
hb in m(|Er

hb, z:=v|) contains information of the form (m′,?z)
only, i.e., there are no write events and all read-events concern variable z. Also, the
event labels are unique for both reads and writes. In an abuse of notation, we may
refer to m being in Er

hb and write m ∈ Er
hb meaning, more precisely, (m,?z) ∈ Er

hb.

12Intuitively, say S0
e0−→ S1

e1−→ ·· ·
en−1−−→ Sn is a run starting from an initial configuration S0. Let ▷◁ be

an independence relation on events, meaning, given Si
ei−→ Si+1

ei+1−−→ Si+2, we say that ei ▷◁ ei+1 if there
exist S′ such that Si

ei+1−−→ S′
ei−→ Si+2. The independence relation induces an equivalence relation on traces,

namely, traces are equivalent if they can be derived from one another via the permutation of independent

events. It can be shown that if S0
h−→ Sn is a run containing a write-after-read race, the exist an equivalent

run in which the race materializes as a read-after-write race.
13Since depending on scheduling, a WaR data-race can manifest itself as RaW race, one option would

be not add instrumentation for WaR race detection and, instead, hope to flag the RaW manifestation in-
stead. Such practical consideration illustrates the trade-off between completeness versus run-time over-
head.

73

(m, !z) ∈ Ehb Er
hb ⊆ Ehb fresh(m′) E ′hb = {(m

′, !z)}∪ (Ehb−Ehb ↓z)
R-WRITE

p⟨Ehb,z := v′; t⟩ ∥ m(|Er
hb, z:=v|)−→ p⟨E ′hb, t⟩ ∥ m′(| /0, z:=v′|)

E ′rhb = {(m
′,?z)}∪

(
Er

hb−Ehb ↓z
)

(m, !z) ∈ Ehb fresh(m′) E ′hb = {(m
′,?z)}∪ (Ehb−Ehb ↓z)∪{(m, !z)}

R-READ
p⟨Ehb,let r = load z in t⟩ ∥ m(|Er

hb, z:=v|)−→ p⟨E ′hb,let r = v in t⟩ ∥ m(|E ′rhb, z:=v|)

Figure 3.10: Operational semantics augmented for efficient data-race detection

3.4.3 Garbage collection of happens-before sets

Knowledge of past events contained in a happens-before set Ehb is naturally mono-
tonically increasing. For example, each time a goroutine learns about happens-
before information, it adds to its pool of knowledge. In particular, events that are
known to have “happened-before” cannot, by learning new information, become
“concurrent.” An efficient semantics, however, does not accumulate happens-before
information indiscriminately; instead, it purges redundant information. We say “re-
dundant” for the purpose of flagging racy executions, but leaving out conflicting
accesses that have been overtaken by more recent memory events.

3.4.3.1 Garbage collection on writes

For a thread t to successfully write to z, all previously occurring accesses to z must
be in happens-before with the thread’s current state. One optimization comes from
realizing that we can purge all information about prior accesses the variable z from
the happens-before set of the writing thread t. We call these prior accesses redundant
from the point of view of flagging racy executions. The reason for the correctness
of this optimization is as follows: All future access of t to z are synchronized with
the redundant accesses, after all, the accesses are recorded in t’s happens-before set.
Therefore, from the perspective of t, these accesses do not affect data-race detection.
For the same reason, if a thread t ′ synchronizes with t, there is no race to report if
and when t ′ accesses memory—the absence of these redundant accesses from t ′’s
happens-before is, therefore, inconsequential. Finally, if t ′ does not synchronize
with t, then an access to z is racy because it is unsynchronized with t’s most recent
write, regardless of the redundant prior accesses. Note that this optimization allows
us to flag all racy executions even if we fail to report some of the accesses involved
in the race.

74

Rule R-WRITE of Figure 3.10 embodies this discussion. Before writing, the
rule checks that the attempted write happens-after all previously occurring accesses
to z. This check is done by two premises: premise (m, !z) ∈ Ehb makes sure that the
most recent write to z, namely, the one that produced event (m, !z), is in happens-
before with the current thread state Ehb. As per discussion in Section 3.4.1, being
synchronized with the most recent write means the thread is synchronized with all
writes up to that point in the execution. The other premise, Er

hb ⊆ Ehb, makes sure
that the attempted write is in happens-after read accesses to z. If these two premises
are satisfied, the write can proceed and prior accesses to z are garbage collected from
the point of view of t. The filtering of redundant accesses is done by subtracting
Ehb ↓z in

E ′hb = {(m′, !z)}∪ (Ehb−Ehb ↓z)

where ↓z projects the happens-before set down to operations on variable z. Finally,
the write rule also garbage collects the in-memory record Er

hb by setting it to /0,14

meaning that no read event have accumulated after the write yet.

3.4.3.2 Garbage collection on reads

We also garbage collect on load operations. Say t reads from z, thus generating event
(m′,?z). Let us call redundant the memory accesses to z in t’s happens-before set at
the time event (m′,?z) takes place, with the exception of (m, !z). A read operation
can only conflict with a future write; there are not read-read conflicts. For a future
write to take place, the writing thread will need to synchronize with a thread that
“knows” about the read m′.15 Any thread that knows of m′ would also know about
the redundant access to z and know of (m, !z). In other words, m′ and m subsume all
happened-before accesses of z from the perspective of t. Therefore, we can garbage
collect all such accesses by filtering them out of the thread’s happen-before set, as
in

E ′hb = {(m′,?z)}∪ (Ehb−Ehb ↓z)∪{(m, !z)}.

These redundant accesses are also filtered out of the in-memory happens-before set:

E ′rhb = {(m′,?z)}∪ (Er
hb−Ehb ↓z) .

14As per discussion in Section 3.4.1, a term representing a memory location m(|Er
hb, z:=v|) records in

Er
hb all the reads to z that have accumulated after the write that generated the write label m. When a new

write m′ of value z := v′ ensues, we update the memory term to record this new write and we reset its
corresponding Er

hb to /0.
15“Knowing about the read m′” is a necessary condition for a thread to successfully write to z, but it

is not a sufficient one. There may exist other reads, say m′′, m′′′, etc that are concurrent with m′. A thread
needs to synchronize with all such concurrent reads before it can successfully write to z.

75

3.4.3.3 Off-line garbage collection and channel communication

The garbage collector rules of Figure 3.11 can be run non-deterministically during
the execution of a program. Rule R-GC eliminates stale entries from the happens-
before set of a thread. It can be sensible to perform garbage collection also after
a thread interacts with a channel, as happens-before information communicated via
channels are likely to become stale. For example, suppose a thread, whose happens-
before set does not contain stale entries, sends onto a channel and continues execut-
ing. By the time a receive takes place, the happens-before set transmitted via the
channel may have become stale. Similarly for happens-before transmitted between
receives and prior sends via the backward channel. Alternatively, we may choose an
implementation in which the happens-before of in-flight messages are also garbage
collected, in which case we would process the happens-before sets in a channel’s
forward and backward queues.

E ′hb = Ehb − {(m̂, !z) | (m̂, !z) ∈ Ehb ∧ m̂ ̸= m}
− {(m̂,?z) | (m̂,?z) ∈ Ehb ∧ (m̂,?z) /∈ Er

hb} R-GC
p⟨Ehb, t⟩ ∥ m(|Er

hb, z:=v|)−→ p⟨E ′hb, t⟩ ∥ m(|Er
hb, z:=v|)

Figure 3.11: Off-line garbage collection

3.5 Comparison with vector-clock based race detection

Vector clocks (VCs) are a mechanism for capturing the happen-before relation over
events emanating from a program’s execution [67]. A vector clock V is a function
Tid→Nat which records a clock, represented by a natural number, for each thread
in the system. “VCs are partially-ordered (⊑) in a pointwise manner, with an asso-
ciated join operation (⊔) and minimal element (⊥V). In addition, the helper function
inct increments the t-component of a VC” [36].

V1 ⊑V2 iff ∀t. V1(t)≤V2(t)

V1⊔V2 = λ t. max(V1(t),V2(t))

⊥V = λ t. 0
inct(V) = λu. if u = t thenV(u)+1 elseV(u)

Using vector clocks, Pozniansky and Schuster [80] proposed a data-race detec-
tion algorithm referred to as DJIT+. Their algorithm works as follows. Each thread
t is associated with a vector clock Ct . Entry Ct(t) stores the current time at t, while

76

Ct(u) for u ̸= t keeps track of the time of the last operation “known” to t as having
been performed by thread u.

The algorithm also keeps track of memory operations. Each memory location x
has two vector clocks, one associated with reads, Rx, and another with writes, Wx.
The clock of he last read from variable x by thread t is recorded in Rx(t); similar for
Wx(t) and writes to x by t. When it comes to reading from memory, a race is flagged
when a thread t attempts to read from x while being “unaware” of some write to x.
Precisely, a race is flagged when t attempts to read from x and there exists a write
to x by thread u, Wx(u), that is not accounted for by t, meaning Wx(u) ≥ Ct(u),
or, equivalently, Wx ̸⊑ Ct . If t succeeds in reading from x, then Rx(t) is updated
to the value of Ct(t). When it comes to writing to memory, a race is flagged when
t attempts to write to x while being unaware of some read or write to x, meaning
either Rx ̸⊑ Ct or Wx ̸⊑ Ct . If t succeeds in writing to x, then Wx(t) is updated to
Ct(t).

A thread’s clock is advanced when the thread executes synchronization opera-
tions, which have bearing on the happens-before relation. The algorithm was pro-
posed in the setting of locks; each lock m is associated with a vector clock Lm. When
a thread t acquires m, then Ct is updated to Ct⊔Lm. Acquiring a lock is analogous to
receiving from a channel with buffer size one: the receiving thread updates its vector
clock by incorporating the VC previously “stored” in the lock. When a thread t re-
leases a lock m, the vector clock Lm is updated to Ct and thread’s clock is advanced,
meaning Ct := inct(Ct). We can think of lock release as placing a message, namely
the vector clock associated with the releasing thread, into a buffer of size one. Thus,
in comparison with the approach presented here, lock operations are a special case
of buffered channel communication. Our approach deals with channels of arbitrary
size and their capacity limitations.

A significant difference between our approach and DJIT+ is that we dispense
with the notion of vector clocks. Vector clocks are a conceptual vehicle to capturing
partial order of events. Instead of relying on VCs, our formalization is tied directly
to the concept of happens-before. Vector clocks are expensive. VCs require O(τ)
storage space and common operations on VCs consume O(τ) time where τ is the
number of entries in the vector. In the case of race detection, τ is the number of
threads spawn during the execution of a program. It turns out that not all uses of
VCs in DJIT+ are strictly necessary. In fact, Flanagan and Freund [36] introduce
the concept of epoch, which consists of a pair c@t where c is a clock and t a thread
identifier. They then replace Wx, the vector clock tracking writes to x, with a sin-
gle epoch. This epoch captures the clock and thread identity associated with the
most recent write to x. Similarly, in our approach, a memory location is associated
with the identifier of only the most-recent write to that location. Any thread who is
“aware” of this identifier is allowed to read from the corresponding variable.

FASTTRACK also reduces the dependency on vector clocks by replacing Rx
with the epoch of the most recent read to x. However, since reads are not totally

77

ordered, FASTTRACK dynamically switches back to a vector clock representation
when needed. Similar to FASTTRACK, we record the most recent (unordered) reads
which, in the best case, involves an O(1)-memory footprint and O(τ) at the worst.

When it comes to per-thread memory consumption, however, our approaches
look very different. While DJIT+’s and FASTTRACK’s worst-case memory con-
sumption per thread is O(τ), our is O(ντ) where ν is the number of shared variables
in a program.16 Vector clocks’ memory efficiency, when compared to happens-
before sets, come from VC’s ability to succinctly capture the per-thread accesses
that take place in between advances of a clock. A thread’s clock is advanced when
the thread releases a lock.17 All accesses made by a thread t in a given clock c are
captured by the clock: if another thread u “knows” the value c of t’s clock, then
u is in happens-after with all accesses made by t—that is, all accesses up to when
t’s clock was advanced to c+ 1. In contrast, the happens-before set representation
is much more coarse. We keep track of individual accesses, as opposed to lump-
ing them together into a clock number. This coarseness explains the extra factor of
ν in the worst-case analysis of the happens-before set solution. Although being a
disadvantage in the worst case scenario, it does provide benefits, as we discuss next.

Note that the vector clocks associated with threads and locks grow monoton-
ically. By growing monotonically we do not mean that time marches forward to
increasing clock values. Instead, we mean that the number of clocks in a vector
grows without provisions for the removal of entries. This growth can lead to the
accumulation of “stale” information, where by stale we mean information that is not
useful from the point of view of race detection. This growth stands in contrast to our
approach to garbage collection. Stale information is purged from happens-before
sets, which means they can shrink back to size zero after having grown in size.

3.5.1 Stale information in the vector clock setting

We have explored the notion of stale race-detection information in the setting of
happens-before sets and have hinted at how stale information also exists within vec-
tor clocks. Here we define what a stale VC entry is. Similar to HB-sets, a vector-
clock entry is stale if the entry does not impact a race detector’s judgment of a
program and its execution. Such entries can thus be purged from VCs associated
with threads and locks.

16We believe the worst case is a degenerate case unlikely to happen: it involves every thread reading
from every shared variable and then exchanging messages as to inform everyone else about their read
events.

17If channels were used instead of locks, the advance would take place when a thread sends onto or
receives from a channel.

78

Definition 10. (Stale VC entry) A vector clock entry c@t belonging to a thread or
lock is stale if, for all shared variables x,

Rx(t) ̸= 0→ c < Rx(t) and,

Wx(t) ̸= 0→ c <Wx(t).

Given a sound and complete race detector, a memory access will either succeed
(if properly synchronized) or fail (in the case of a race) regardless of whether a
stale entry is contained in the vector clock of the accessing thread. Stale entries
can be removed from threads’ and locks’ VCs—potentially alleviating the memory
pressure associated with race detection—without impacting the data-race detector’s
outcome.

Proof. When proving that a stale entry is irrelevant when it comes to data-race de-
tection, let u be a thread attempting to access variable x and c@t be a stale entry in
Cu. We break the access into the following cases:
Case: The thread attempts a read access that is flagged as racy
Since the read is flagged as racy, there exists t ′ such that Cu(t ′)<Wx(t ′). If t = t ′,
then removing c@t from Cu does not change the inequality, which means the read
is flagged as racy regardless of c@t being contained in the thread’s vector clock. If
t ̸= t ′, then the access is flagged as racy irrespective of the clock value associated
with t in Cu.
Case: The access is a read (not flagged as racy)
Since the read succeeds, then for all t ′, Wx(t ′)≤Cu(t ′). If Wx(t) = 0, then c@t does
not gate the access, meaning that the access would have succeeded even if c@t was
not present in Cu. The case in which Wx(t) ̸= 0 leads to the following contradiction,
meaning that the access cannot be gated by a stale entry:

• Cu(t)<Wx(t) by the staleness of c@t and Wx(t) ̸= 0, and

• Wx(t)≤ Cu(t) from the fact that the access succeeded.

Case: Write access
Write accesses (racy and non-racy) are handled similar to read accesses. The differ-
ence with write accesses is that they require inspecting Rx in addition to Wx.

Although stale entries can be removed from the vector clocks associated with
threads and locks, it is impractical to traverse all shared memory in order to iden-
tify stale entries. Defining an algorithm that alleviates memory pressure without
compromising runtime is an open research question.

Let us look at an example that illustrates the difference in treatment of stale
information between current VC based algorithms and our detection mechanism

79

based on happens-before set. Consider the producer/consumer paradigm, where a
thread produces information to be consumed by other threads. Say p0 produces
information by writing to the shared variable z. The thread then notifies consumers,
p1 and p2, by sending a message on channel c. The consumers read from z and signal
the fact that they are done consuming by sending onto channel d. The producer p0
writes to z again once it has received the consumers’ messages.

Producer Consumers
p0 p1 p2

z := 42; ← c; ← c;
c← 0; c← 0; load z; load z;
← d; ← d; d← 0 d← 0
z := 43

Let us run this example against a prototype implementation [31] of our proposed
race detector, called GRACE, and against FASTTRACK. Consider the point in the
execution after p0 has written to z, the consumers have read from z and notified p0,
and p0 is about to write to z again. Below is the state of the detectors at this point.
The information contained in the happens-before sets and the vector clocks is very
similar. There are three entries for p0, and two entries for p1 and p2 each.

Happens-before sets Vector clocks

E p0
hb = {(m0, !z),(m1,?z),(m2,?z)} Cp0 =⊥[p0 7→ 6, p1 7→ 1, p2 7→ 1]

E p1
hb = {(m0, !z),(m1,?z)} Cp1 =⊥[p0 7→ 2, p1 7→ 2]

E p2
hb = {(m0, !z),(m2,?z)} Cp2 =⊥[p0 7→ 3, p2 7→ 2]

The happens-before set E p0
hb show the reads by p1 and p2 as being in happens-

before with respect to p0, along with p0’s own write to z. It also shows p1 and p2
as being “aware” of p0’s write to z, as well as being “aware” of their own reads to z.
The same information is captured by the vector clocks. Recall that the bottom clock,
⊥, maps every process-id to the clock value of 0. Thus, the VC associated with p0
contains p0’s clock (which happens to be 6) as well as the clock associated with the
reads to z by p1 and p2. In this execution, p0’s clock was 2 when the thread wrote
to z. Thus, the entry p0 7→ 2 in Cp1 and the entry p0 7→ 3 in Cp2 place the write to z
by p0 in p1’s and p2’s past.

The difference between our approach the VC based approach is evidenced in the
next step of execution, when p0 writes to z for the second time. This write subsumes
all previous memory interactions on z. In other words, this write is in happens-
after with respect to all reads and writes to z up to this point in the execution of
the program. Therefore, it is sufficient for a thread to synchronize with p0 before

80

issuing a new read or write to z; also, it is no longer necessary to remember the
original write to z and the reads from z by p1 and p2. Here are the happens-before
sets and vector clocks in the next step of execution, meaning, after p0 writes to z the
second time:

Happens-before sets Vector clocks

E p0
hb = {(m3, !z)} Cp0 =⊥[p0 7→ 6, p1 7→ 1, p2 7→ 1]

E p1
hb = {} Cp1 =⊥[p0 7→ 2, p1 7→ 2]

E p0
hb = {} Cp2 =⊥[p0 7→ 3, p2 7→ 2]

The happens-before sets are mostly empty; the only entry corresponds to the
most recent write to z, which is known to p0. Meanwhile, the vector clocks are
unchanged. Note, however, that every entry with the exception of p0 7→ 6 in Cp0
is stale. In other words, with the exception of p0 7→ 6, the presence or absence
of all other entries does not alter a thread’s behavior. To illustrate this point, take
entry p0 7→ 2 in Cp1 as an example: if p1 were to attempt to access z, a data race
will ensue regardless of whether or not the entry p0 7→ 2 is in p1’s vector clock.
Therefore, ideally, we would want these stale entries purged from the vector clocks
of p0, p1, and p2. Concretely, we would want Cp0 =⊥[p0 7→ 6] and Cp1 =Cp2 =⊥.

Similar unbounded growth occurs in the VCs associated with locks,18 thus also
leading to the accumulation of stale information. We conjecture that an approach
that purges stale information from VCs, similar to our notion of garbage collec-
tion, would be highly beneficial. VC-based implementations are very efficient in
managing the memory overhead associated with variables. For example TSan, a
popular race-detection library based on vector clocks that comes with the Go tool
chain, stores one write and a small number of reads per memory location (the num-
ber of reads stored is 4 in the current implementation) [44]. Capping the number
of tracked read events leads to false negatives; the cap a fair compromise between
recall and memory consumption. In order to further reduce the memory footprint of
modern race detection implementations, we are thus left with devising approaches
to managing threads’ and locks’ memory overhead.

Unfortunately, reducing memory pressure on vector clocks associated with
threads and locks is arguably more difficult than reducing memory pressure on
VCs associated with shared variables. On the one hand, if a variable does not
“remember” a read or write to itself as having happened-before, then the variable
becomes more permissive from the point of view of race detection; meaning, more
threads would be able to interact with this variable without raising a data-race, even
when races should have been reported. On the other hand, if a thread “forgets”
about some prior read or write access that have taken place on a variable, a spurious

18The acquire grows the VC associated with the acquiring thread; the release sets the VC of the
corresponding lock to the VC of the acquiring thread.

81

data race may be raised. Thus, while dropping clock entries in the VCs associated
with variables can introduce false negatives, dropping clock entries from VCs
associated with threads and locks introduce false positives. From a practical
perspective, false negatives are acceptable and can even be mitigated,19 however,
being warned of non-existing races is overwhelming to the application programmer,
which means false positives are generally not tolerated.

3.6 Connections with trace theory

Our operational semantics mimics the Go memory model in defining synchroniza-
tion in terms of channel communication. Specifically, we abide by rules (3.1)
and (3.2), which establish a happens-before relation between a send and the comple-
tion of its corresponding receive, and, due to the boundedness of channels, between
a receive and the completion of a future send. However, these are not the only impo-
sition by the semantics on the order of events. Channels act as FIFO queues in both
Go [19] as well as in our operational semantics. However, neither Go nor our op-
erational semantics establish a happens-before relation between consecutive sends
or consecutive receives. For example, the ith send on a channel c does not happens-
before the (i + 1)th send on c. Therefore, there exist events that are necessarily
ordered, but that are not in happens-before relation.

It is tempting to think of happens-before in terms of observations, where a and b
are in happens-before if and only if we observe a followed by b, and never the other
way around. This intuition is captured by the following tentative definition:

Let idx (a,h) be the index of event a in a run h. Given the set of runs H starting
from an initial configuration, we say that event a happens-before b if-and-only-if,
for all runs h ∈ H such that a,b ∈ h, idx (a,h)<idx (b,h).

When it comes to weak memory systems, there exist events that are ordered
according to the above tentative definition but that are not in happens-before relation.
Take the improperly synchronized message-passing example of Figure 3.12 as an
example. In this example, a thread p0 writes to a shared variable z and sets a flag;
another thread, p1, checks the flag reads from z if the flag has been set.

p0 p1
z := 42; (A) r = load done; (C)
done := true; (B) if r then

load z (D)

Figure 3.12: Message passing example.

19Provided we run a program enough times, we can randomly evict entries from a VC or happens-
before set associated with a variable such that we eventually flag all existing races of the program.

82

If A and B are the first and second instructions in thread p0, and C and D are the
loads of the flag and of the shared variable z in p1, then program order gives rise to
A→hb B and C→hb D. We also have that the load of z in D only occurs if the value of
the flag observed by thread p1 is true, which means it was previously set by thread
p0 in B. Therefore, in all runs in which D is observed, B necessarily occurs earlier
in the execution. This necessity does not, however, place B and D in happens-before
relation. Under many flavors of weak memory, the memory accesses between the
two threads are not synchronized. As the example shows, our tentative definition
of happens-before as always-occurring-before or necessarily-occurring-before does
not work for weak memory systems. How about for sequential consistent ones?

In the program of Figure 3.13, thread p0 sends values 0 and 1 into channel c
consecutively. Concurrently, thread p1 writes 42 to a shared variable z and receives
from the channel, while thread p2 first receives from the channel and conditionally
reads from z. From this program, we construct an example in which events are
necessarily ordered but are not in happens-before—even if we assume sequential
consistency. To illustrate this point, let us consider an execution of the program. Let

p0⟨c← 0;c← 1⟩
p1⟨z := 42; ← c⟩
p2⟨let r :=← c in if r = 1 then load z⟩

Figure 3.13: Conditional race example.

(o)p be a trace event capturing the execution of operation o by threads p. Let also
z! and z? represent a write and read operation on the shared variable z, and sd c
and rv c represent send and receive operations on channel c. Assuming channel
capacity |c | ≥ 2, the sequence below is a possible trace obtained from the execution
of the program. Note that the if-statement’s reduction is interpreted as an internal or
silent transition:

(sd c)p0 (sd c)p0 (z!)p1 (rv c)p1 (rv c)p2 (z?)p2 (3.5)

Given that p1 receives from c before p2 does, the value received by p2 must be 1 as
opposed to 0. Therefore, p2 takes the branch and reads from the shared variable z.
Figure 3.14 shows the partial order on events for this execution. Program order is
captured by the vertical arrows in the diagram; channel communication is captured
by the solid diagonal arrows. As per discussion in Section 3.3.2.3, we make the
distinction between a channel operation and its completion. A channel operations
is depicted as two half-circles; the operation’s completion is captured by the bottom
half-circle. That way, a send (top of the half-circle) happens-before its correspond-
ing receive completes (bottom half).

83

p0p1 p2

sd c 0

sd c 1

z!

rv c

rv c

z?

Figure 3.14: Partial order on conditional-race example.

Now, given that the send operations are in happens-before, meaning
(sd c 0)p0 →hb (sd c 1)p0 , and that channels are First-In-First-Out (FIFO),
the reception of value 0 from c must occur before the reception of 1. This
requirement is captured by the dotted arrow in the diagram. However, according
to the semantics of channel communication (i.e., rules (3.1) and (3.2) of page 57),
this order does not impose a happens-before relation between the receiving
events. In other words, there exist events that are necessarily ordered, but not in
happens-before relation to one another.

The failure of our tentative definition of happens-before as necessarily-
occurring-before, given early in this section, has subtle implications as discussed
next.

3.6.1 Happens-before, traces, and commutativity of operations

Traces come from observing the execution of a program and are expressed as strings
of events. In a concurrent system, however, events may not be causally related,
which means that the order of some events is not pre-imposed. In reality, instead
of sequences, events in a concurrent system form a partially ordered set (see Fig-
ure 3.14 for an example). As advocated by Mazurkiewicz [68], it is useful to com-
bine sequential observations with a dependency relation for studying “the nonse-
quential behaviour of systems via their sequential observations.” By defining an
independence relation on events, it is possible to derive a notion of equivalence on
traces: two traces are equivalent if it is possible to transform one into the other “by
repeatedly commuting adjacent pairs of independent operations” [53].

One way to define independence is as follows: Given a run Ri
a−→ · b−→ R, we say

that a and b are independent if Ri
b−→ · a−→ R, meaning,

• b is enabled at Ri,

84

• a is enabled at Ri
b−→ ·, and

• there exists an R′ such that Ri
b−→ R′ a−→ R.

Clearly, if a happens-before b, then a and b cannot be swapped in a trace. So,
independence between two events means (at least) the absence of happens-before
relation between them. But happens-before is not all that needs to be considered in
the definition of independence.

When translating a partial order of events to a trace, not every linearization that
respects the happens-before relation is a valid trace. Some linearizations of the par-
tial order may not be “realizable” by the operational semantics. In other words,
there can be traces that abide by the happens-before relation but that cannot be gen-
erated from the execution of a program. For example, we can obtain the following
linearization given the partial order of Figure 3.14:

(sd c 0)p0 (sd c 1)p0 (rv c)p2 (z!)p2 (z?)p1 (rv c)p1 . (3.6)

This linearization respects the partial order based on the happens-before relation:
program order is respected, so is the relation between sends and their correspond-
ing receives. However, this linearization breaks the first-in-first-out assumption on
channels. FIFO is broken because, in order for p2 to read from z, it must be that it
received the value of 1 from the channel. But p2 is the first thread to receive from
the channel and, since 0 was the first value into the channel, it must also have been
the first value read from the channel. Therefore, the linearization in Trace 3.6 is not
“realizable” by the operational semantics. While happens-before restricts the com-
mutation of trace operations, there exist other operations that are ordered (though
not ordered by happens-before) and that, consequently, must not commute.

The difficulty in conciliating the commutativity of trace events with the happens-
before relation remains counterintuitive today, even though its origins are related to
an observation made years ago in a seminal paper by Lamport [56]. In the paper,
Lamport points out that “anomalies” can arise when there exist orderings that are
external to the definition of happens-before—see the “Anomalous Behavior” section
of [56]. In order to avoid these anomalies, one suggestion from the paper is to
expand the notion of happens-before so that, if a and b are necessarily ordered, then
a and b are also in happens-before.

Let us analyze the consequences of rolling FIFO notions into the definition of
happens-before. Given the example of Figure 3.13, since the sends are ordered in
a happens-before relation, and the channel is FIFO, one can argue that the receive
events should also be ordered by happens-before. According to this argument, we
ought to promote the dotted line in Figure 3.14 to a solid→hb arrow. This modifica-
tion would make the example well-synchronized. In one hand, given that the write
to z by p1 and the read from z by p2 are always separated by events (by the two
receive events in specific), interpreting the two memory accesses as being synchro-

85

nized seems rather fitting: the two memory accesses cannot happen simultaneously,
nor can they exist side-by-side in a trace.

There are downsides to this approach. For one, the resulting semantics deviates
from Go’s, but, more importantly, such a change does impact synchronization in
counterintuitive ways. Specifically, making the dotted arrow a happens-before ar-
row would imply that a receiver (in this case p2) can learn about prior events that
are not known by the corresponding sender. If the dotted arrow is promoted to a
synchronization arrow, the write (z!)p1 is communicated to p2 via p0 without p0
itself being “aware” of the write. In other words, the write identifier is transmitted
via p0 but is not present in p0’s happens-before set.

We follow Go and allow for some events to always occur in order without af-
fecting synchronization. Consequently, such ordered events are not considered to
be in happens-before order. A less clear consequence, however, is that races can no
longer be defined as simultaneous (or side-by-side) accesses to a shared variable.
This point is explored next.

3.6.2 Manifest data races

Section 3.2 mentioned the concept of manifest data race; below we give a concrete
definition.

Definition 11 (Manifest data race). A well-formed configuration R contains a man-
ifest data race if either hold:

R
(z!)p1−−−→ and R

(z!)p2−−−→ (manifest write-write race on z)

R
(z?)p1−−−→ and R

(z!)p2−−−→ (manifest read-write race on z)

for some p1 ̸= p2.

Manifest data races can also be defined on traces.

Definition 12 (Manifest data race). A well-formed trace h contains a manifest data
race if either

(z!)p1 (z!)p2 (manifest write-after-write)

(z!)p1 (z?)p2 (manifest read-after-write)

(z?)p1 (z!)p2 (manifest write-after-read)

are a sub-sequence of h and where p1 ̸= p2).

While manifest races are obvious, races in general may involve accesses that are
arbitrarily “far apart” in a linear execution. By bring conflicting accesses side-by-
side, we could show irrefutable evidence of a race that, otherwise, may be obscured

86

in a trace. Let h ⊑ h′ represent the fact that h′ is derivable from h by the repeated
commutation of adjacent pairs of independent operations. If h ⊑ h′ and h′ contains
a manifest data race, then we say h contains a data-race. This definition of races
seems unequivocal. From here, soundness and completeness of a race detector may
be defined as such:

Theorem 12. (Soundness) If S0
h−→ is a run flagged by a data-race detector, then

h⊑ hdr with hdr containing a manifest data-race.

Theorem 13. (Completeness) Let S0
h−→ be a run such that h⊑ hdr and hdr contains

a manifest race. Then S0
h−→ is flagged by the data-race detector.

Theorems 12 and 13 are also clear and unequivocal. More importantly, they
link two world views: the view of races as unsynchronized accesses with respect
to the happens-before relation and a view of races in terms of commutativity of
trace events à la Mazurkiewicz. The problem with the concept of manifest data
race and Theorems 12 and 13, however, is that when the definition of independence
is made to respect FIFO order as well as the happens-before relation, the notion
of manifest data race is no longer attainable. In other words, given a definition of
independence which respects FIFO and happens-before, there exist racy traces from
which a manifest data race is not derivable.

The program of Figure 3.13 on page 82 gives rise to such an example. The
access to z by p2 only occurs if p2 receives the second message sent on the channel.
In other words, the existence of event (z?)p2 in a trace is predicated on the order
of execution of channel operations: p2 only reads from z if the other thread, p1,
receives from c before p2 does.20 This requirement places the receive operations
between the memory operations. Therefore, a trace in which (z!)p1 and (z?)p2 are
side-by-side is not attainable. Yet, as discussed previously, the accesses to z are not
ordered by happens-before, and, therefore, are concurrent. Since the accesses are
also conflicting, they constitute a data race.

It seems that Mazurkiewicz traces are “more compatible” with confluence check-
ing than data-race checking. In data-race checking, there are non-confluent runs that
do not exhibit data races; these runs are non-confluent because they have “races on
channels.” In our example, the two receives from p1 and p2 are in competition for
access to the channel. These receive operations are concurrent and non-confluent.
Finally, the example also hints at the perhaps more fundamental observation: that
races have little to do with simultaneous accesses to a shared variable but instead

20In this example, we use the value of the message received on a channel to branch upon. But since
a receive from a channel changes a thread’s “visibility” of what is in memory, it is possible to craft a
similar example in which all message values are unit but in which a thread’s behavior changes due to a
change in the ordering of the receives.

87

with unsynchronized accesses. While simultaneous accesses are clearly unsynchro-
nized, not all unsynchronized accesses may be made simultaneous.21

3.7 Related work

Race detection via the analysis of source code is an undecidable problem. Regard-
less, race detectors via the static analysis of source code [72, 100, 13] exist and have
found application in industry. More recently, Blackshear et al. [13] implement a
static analysis tool called RACERD to help the parallelization of previously sequen-
tial Java source code. The tool over approximates the behavior of programs and can,
thereby, reject programs that turn out to be data-race free. This over approximation
was not a hindrance, as even conservative parallelization efforts can lead to gains
over purely sequential code.

By and large, however, instead of flagging races in a program as a whole, race
detectors have resorted the analysis of particular runs of a program. To that end,
detectors instrument the program so that races are either flagged during execution,
in what is called on-line or on-the-fly race detection, or on logs captured during exe-
cution and analyzed postmortem. Even still, dynamic race detection is NP-hard [74]
and many techniques have been proposed for detection at scale. Broadly, these tech-
niques involve static analysis used to reduce the number of runtime checks [36][86],
and heuristics that trade false-positive [90, 81, 20] or false-negative rates [66] for
better space/time utilization. For example, by allowing races to sometimes go unde-
tected, sampling race detectors let go of completeness in favor of lower overheads.
One common heuristic, called the cold region hypothesis, is to sample more fre-
quently from less executed regions of the program. This rule-of-thumb hinges on
the assumption that faults are more likely to already have been identified and fixed
if they occur in the hot regions of a program [66]. Alternatively, by going after a
proxy instead of an actual race, imprecise race detectors let go of soundness. The
prominent examples here are Eraser’s LockSet [90] and Locksmith [81], which en-
force a lock-based synchronization discipline. A violation of the discipline is a code
smell but not necessarily a race. The amalgamation of different approaches have
also been investigated, leading to hybrid race detectors. For example, O’Callahan
and Choi [76] combined LockSet-based detection with happens-before information
reconstructed from vector clocks; Choi et al. [20] extended LockSet to incorporate
static analyses.

Another avenue of inquiry has lead to predictive race detection [93, 47], which
attempts to achieve higher detection capabilities by extrapolating beyond individual
runs. Huang et al. [47] incorporate abstracted control flow information and formu-
late race detection as a constraint solving problem. With the goal of observing more

21There may not exist a configuration from which two transitions are possible; transitions that involve
conflicting memory accesses. Yet, it is possible for two access separated “in time” to be unsynchronized.

88

races per run, Smaragdakis et al. [93] introduce a new relation, called causally-
precedes, which is a generalization of the happens-before relation.

A number of papers address race detection in the context of channel communi-
cation [24, 25, 97]. Some of the papers, however, do not speak of shared memory
but, instead, define races as conflicting channel accesses. In that setting, the lack of
conflicting accesses to channels imply determinacy. A different angle is taken by
Terauchi and Aiken [97], who, among different kinds of channels, define a buffered
channel whose buffer is overwritten by every write (i.e., send) but never modified
by a read (i.e., receive). This kind of channel, referred to as a cell, behaves, in
essence, as shared memory. The goal of Terauchi and Aiken [97] is, still, determi-
nacy. Having conflated the concept of shared memory as a channel, determinacy is
then achieved by ensuring the absence of conflicting accesses to channels. Our goal,
however, is different: we aim to detect data-races but do not want to go as far as
ensuring determinacy. Therefore, our approach allows “races” on channel accesses.
From a different perspective, however, the work of Terauchi and Aiken [97] can be
seen as complementary to ours: We conjecture that their type system can serve as
the basis for a static data-race detector.

Among the dynamic data-race detection tools from industry, Banerjee et al. [8]
discuss different race detection algorithms including one used by the Intel Thread
Checker. The authors describe adjacent conflicts, which is similar to our notion of
side-by-side or manifest data race. The paper also classifies races similar to our
WaR, RaW, and WaW classification.

Go has a race detector integrated to its tool chain [42]. The -race command-line
flag instructs the Go compiler to instrument memory accesses and synchronization
events. The race detector is built on top of Google’s sanitizer project [43] and TSan
in particular [91, 44]. TSan is part of the LLVM’s runtime libraries [92, 61]; it works
by instrumenting memory accesses and monitoring locks acquisition and release as
well as thread forks and joins. Note, however, that channel communication is the
vehicle for achieving synchronization in Go. Even though locks exist, they are part
of a package, while channels are built into language. Yet, the race detector for
Go sits at a layer underneath. In this chapter we study race detection with channel
communication taking a central role. Also, different from TSan, we employ propose
a technique based on what we call happens-before sets as opposed to vector clocks.
The consequences of this decision is discussed in detail on Section 3.5.

It is also relevant to point out that, in the absence of the DRF-SC guarantee, one
may resort to finding data races involving weak memory behavior. Since the full
C/C++11 memory model can harbor such races, and with the goal of finding data
races in production level code, Lidbury and Donaldson [60] extend the ThreadSani-
tizer (TSan) [91, 44] to support a class of non-sequentially consistent executions.

89

3.8 Conclusion

We presented a dynamic data-race detector for a language in the style of Go: featur-
ing channel communication as sole synchronization primitive. The proposed detec-
tor records and analyzes information locally and is well-suited for online detection.

Our race detector is built upon the operational semantics discussed in Chapter 2,
where we formalize a weak memory model inspired by the Go specification [40].
In that setting, we recorded memory read- and write-events that were in happens-
before relation with respect to a thread’s present operation. This information was
stored in a set called Ehb or the happens-before set of a thread, and it was used to
regulate a thread’s visibility of memory events. The core of the work was a proof
of the DRF-SC guarantee, meaning, we proved that the proposed relaxed memory
model behaves sequentially consistently in the absence of data races. The proof
hinges on the fact that, in the absence of races, all threads agree on the contents of
memory; see the consensus lemmas in Section 2.6. The scaffolding used in the proof
of the consensus lemma contains the ingredients used of the race detectors presented
in this chapter. Based on our experience, we conjecture that one may automatically
derive a race detector given a weak memory model and its corresponding proof of
the DRF-SC guarantee.

In the DRF-SC the proof of Chapter 2, we show that if a program is racy, it
behaves sequentially consistent up to the point in which the first data-race is en-
countered. In other words, this first point of divergence sets in motion all behavior
that is not sequentially consistent and which arise from the weakness in the mem-
ory model. With this observation, we argue that a race detector can operate under
the assumption of sequential consistency. This is a useful simplification, as sequen-
tial consistent memory is conceptually much simpler than relaxed memories. If the
data-race detector flags the first evidence of a data-race, then program behavior is
sequentially consistent up to that point.

Avenues for future work abound. In contrast to data-race detectors based on
vector clocks, our approach using happens-before sets does not provide as terse of
a representation for the collection of memory events performed by a thread in be-
tween synchronization points. In effect, out approach has a larger footprint, which
ought to be mitigated. On the other hand, our thorough expunging of stale infor-
mation can serve as inspiration to vector clock based approaches, which allow for
the accumulation of stale information—see Section 3.6. Another extension would
be to statically analyze a target program with the goal of removing dynamic checks
or ameliorating the detector’s memory consumption. Here, we may be able to bor-
row from the research on static analysis for dynamic race-detection in the context
of lock-based synchronization disciplines. Finally, by connecting our semantics and
the work of Maarand [63], it may be possible to address some of the issues raised in
Section 3.6 concerning a trace-theory based interpretation of data races.

4Finding and fixing a mismatch
between the Go memory model
and data-race detector

Go is an open-source programming language developed at Google. In previous
works, we presented formalizations for a weak memory model and a data-race de-
tector inspired by the Go specification. In this chapter, we describe how our the-
oretical research guided us in the process of finding and fixing a concrete bug in
the language. Specifically, we discovered and fixed a discrepancy between the Go
memory model and the Go data-race detector implementation—the discrepancy led
to the under-reporting of data races in Go programs. Here, we share our experience
applying formal methods on software that powers infrastructure used by millions of
people.

4.1 Introduction

Go is an open-source programming language designed for concurrency. Developed
at Google, the language has gained traction in the areas of cloud computing [38],
where it is used to implement various client-server applications and container man-
agement systems, such as Docker [69] and Kubernetes [18].

One of the language’s main features are light-weight threads, called goroutines,
which are spawned during function invocation. Any function can be made to exe-
cute asynchronously by simply prepending the keyword go to the function’s name
during invocation. Go’s approach to synchronization also stands out. Do not com-
municate by sharing memory; instead, share memory by communicating [41]—is
a catchphrase among Go programmers. The language’s feature-mix encourages a
style of programming where (1) variables are implicitly owned by goroutines, and
(2) variables are shared when this ownership is transferred through direct communi-
cation. So, in contrast to locks, which favor synchronization via mutual exclusion,
Go has channels, which typically enforce a happens-before relation [56] between a
message sender and its receiver.

The discipline prescribed by Go’s share by communicating slogan is not, how-
ever, enforced at compile time (as static data race detection has the potential of
introducing a large number of false alarms). It is, therefore, possible for programs
to harbor data races. Since data races often lead to counterintuitive behavior, the Go
programming language comes with a data-race detector built into its toolchain.

The Go memory model is relaxed and its specification describes the behavior of
well-synchronized programs. In Chapter 2, we gave a small-step operational seman-

91

92

tics of a memory model inspired by Go’s. There, we proved the DRF-SC guarantee,
which states that data-race free (DRF) program executions behave sequentially con-
sistently (SC) under the proposed model. Given the importance of flagging data
races, in Chapter 3 we explore the use of our semantics for the sake of data-race
detection. Armed with these formalisms, we turned our attention to Go’s imple-
mentation. With that, we discovered that the Go data-race detector was not strictly
abiding by the rules of the Go memory model specification. This oversight lead
to the under-reporting of data races in Go programs. We then proposed and im-
plemented a fix in conjunction with the Go community. Here, we discuss how the
theoretical modeling of the language helped us find and address this issue.

In Sections 4.2 and 4.3, we will visit the Go memory model and explore ex-
amples of synchronization via channel communication. Having covered this back-
ground, we discuss how the Go data-race detector is built into the language (Sec-
tion 4.4). In Section 4.4.1, we show that the detector’s implementation inadvertently
mismatched rules governing channel communication. We address the issue in Sec-
tion 4.5 and share lessons we learned in Section 4.6.

4.2 Synchronization via channel communication

Two concurrent memory accesses constitute a data race if they reference the same
memory location and at least one of the accesses is a write. Data races can be
eliminated through synchronization, that is, the enforcement of an order between
conflicting memory accesses. In Go, synchronization is performed via channel com-
munication. Go channels assure FIFO communication from a sender to a receiver
sharing the channel’s reference. Channels can be dynamically created and closed—
their type and finite capacity are fixed upon creation.

When attempting to receive from an empty channel, a thread blocks until, if ever,
a value is made available by a sender. A thread also blocks when attempting to send
on a channel that is full. According to the Go memory model specification [40], the
following two main rules govern synchronization. Given a channel c with capacity
C:

I. A send on c happens-before the corresponding receive from c completes.

II. The kth receive from c happens-before the (k+C)th send on c completes.

The first rule establishes a causal relationship between a sender and its communicat-
ing partner. In contrast, the second rule establishes a relationship between a sender
and some past receiver, without there being any message transmission between the
two goroutines. Note also that the second rule accounts for channel capacity: a cur-
rent sender is able to place a new message because some past receiver, by taking an
older message out, has made space in the channel’s buffer.

93

Figure 4.1a is an example of synchronization via rule (I), and Figure 4.1b is an
example via rule (II). Throughout the chapter, we will follow the syntax in Chapter 2,
which closely matches the syntax of a relevant subset of Go. The term c← v, with
the arrow pointing into c, stand for the sending of value v over channel c. Let← c,
with the arrow pointing away from c, stand for the reception of a value from the
channel. Assuming a channel of capacity one, Figure 4.1a is the classic message
passing example, while Figure 4.1b enforces mutual exclusion.

T 0 T 1
z := 42 ← c
c← 0 load z

(a) Message passing example.

T 0 T 1
c← 0 c← 0
z := 42 z := 43
← c ← c

(b) Mutual exclusion example.

Figure 4.1: Synchronization via channel communication (channels of capacity one).

In the message passing example, the goroutine T 0 writes to a shared variable
z and, by sending a message over a channel, the routine transfers its implicit own-
ership of z. Goroutine T 1 blocks until a message is ready to be received. Once a
message has been received, T 1 proceeds to load from z. This program is properly
synchronized, which means T 1 necessarily loads the value of 42 as opposed to po-
tentially observing an uninitialized variable value. Using the happens-before (HB)
rules of the Go memory-model specification, we can show that the memory accesses
are properly synchronized as follows:

z := 42 ⊏hb c← 0 via program order (4.1)
c← 0 ⊏hb ← c via channel rule (I) (4.2)
← c ⊏hb load z via program order (4.3)

z := 42 ⊏hb load z via transitivity of HB, (4.1), (4.2), (4.3).

While Figure 4.1a and rule (I) account for direct communication, Figure 4.1b
relies on rule (II) and the use of channels as locks. The example in Figure 4.1b in-
volves two threads attempting to write to the same shared variable. Before writing,
a thread sends a message onto a channel. Because the channel has capacity one,
all subsequent attempts to send again will block until the prior message is received.
Therefore, it is not possible for T 0 and T 1 to execute their critical sections at the
same time. The send is thus analogous to acquiring a lock, and the receive to releas-
ing the lock. Again, we can use the Go memory model to reason about this example.

94

Without loss of generality, assume T 0 sends its message first, then

z := 42 ⊏hb ← c by T 0 via program order (4.4)
← c by T 0 ⊏hb c← 0 by T 1 via channel rule (II) (4.5)

c← 0 by T 1 ⊏hb z := 43 via program order (4.6)
z := 42 ⊏hb z := 43 transitivity, (4.4), (4.5), (4.6).

While mutual exclusion is ensured, we cannot ascertain the final value of z. If T 0
sends a message before T 1, then z equals 43; otherwise, z = 42. Note also that, in
this example, rule (I) is obviated by the program order; therefore, the rule has no
synchronization effect here.1

The Go memory model is described succinctly in plain English [40]. The word
“completes,” present in both rules (I) and (II), can easily be overlooked. By over-
looking the distinction between an operation and its completion, the Go data-race
detector over-synchronizes and fails to report certain races. The bug, which we de-
scribe in detail in the next section, is related to the following question: Is it possible
for the detector to account for the mutex paradigm (Figure 4.1b) and, at the same
time, observe the distinction between a channel operation and its completion?

4.3 The Go memory model: Every word counts

The completion of a channel operation, in addition to the operation itself, is an im-
portant part of the Go memory model. In rule (I), it is not the case that a send
happens-before the corresponding receive. Instead, the send happens-before the
completion of the corresponding receive. Similar for rule (II), involving a past re-
ceive and the completion of a current send. To illustrate, consider Figure 4.2, where
each vertical arrow represents the execution of a thread (flowing from top to bottom).
Both the top and the bottom diagrams depicts consecutive send sd and receive rv

operations on a channel of capacity one—the operations are indexed as to show their
order of execution.

According to the Go memory model, channel operations are related as shown
in Figure 4.2a. The operations are broken into two halves of a circle: the top is
the operation and the bottom its completion. The arrows in the diagram represent
the happens-before relation—arrows are labeled with the memory-model rule that
justify their existence. According to rule (I), the 0th send happens-before the com-
pletion of the 0th receive—this relation is captured by the arrow starting at the top
half-circle on the far left (sd0) and ending at the bottom half-circle to the right

1The relation below can be derived by both program-order as well as by rule (I). Similar for the send
and receive operations performed by T 1.

c← 0 by T 0 ⊏hb ← c by T 0

95

sd0 rv0 sd1 rv1

. . .
sdi rvi

rule 1 rule 2 rule 1 rule 2 rule 1 rule 2

(a) Depiction of rules (I) and (II) on a channel of capacity one.

sd0
rv0

sd1
rv1

· · ·
sdi

rvi
rule 1 rule 2 rule 1 rule 2 rule 1 rule 2

(b) Alternate formulation of rules (I) and (II) with no distinction between an operation and its
completion.

Figure 4.2: The Go memory model specification, every word counts.

(completion of rv0). The next arrow establishes the happens-before relation be-
tween receive rv0 and send sd1 according to rule (II), and so forth. Note from
Figure 4.2a that an operation is related to its immediate predecessor. There is no
chain of happens-before starting from the “distant” past. For example, although sd0

is related to the completion of rv0, and rv0 is related to the completion of sd1, it is
not the case that sd0 and sd1 are related to each other.

Figure 4.2b captures an alternative formulation of the happens-before rules (I)
and (II) where the word “completes” is left out. Sends and receives are not split into
the operation and the operation’s completion. Instead, sends and receives happen-
before each other. This formulation leads to a chain starting at the very first send, and
connecting every send and receive operation ever performed onto the channel. From
an application programmer’s perspective, this chain leads to an accumulation of
happens-before information: after interacting with a channel, a goroutine’s behavior
is now dependent, not only on its communicating partner but, on every thread that
has previously interacted with the channel. From the point of view of data races,
this alternate formulation leads to over-synchronization.

The Go data-race detector’s implementation matches the behavior of Figure 4.2b
and, therefore, deviates from the Go memory model specification. Note that the
over-synchronization on the part of the detector is not the result of careful delibera-
tion, for example when false-negatives are accepted in exchange for lower runtime
overheads. Rather, the implementation springs from an interpretation of synchro-
nization from the perspective of locks rather than of channels. As will be discussed
in Section 4.5, addressing this issue not only eliminates false-negatives but also

96

yields lower runtime overhead.

4.4 The Go data-race detector

By adding -race to the command line, a Go program can be compiled and run with
data-race detection enabled. The Go data-race detector is based on TSan, the Thread
Sanitizer library [44]. The library is part of the LLVM infrastructure [59] and was
originally designed to find races in C/C++11 applications.

When data-race detection is enabled, each thread becomes associated with an
additional data structure. This data structure keeps track of the operations that are in
happens-before from a thread’s point of view. In most data-race detectors, including
TSan, this data structure is a vector clock (VC) [56]. Vector clocks offer a compact
representation of the relative order of execution between threads. With this book-
keeping, data-race detectors are able to find synchronization issues in programs—
where synchronization means the transfer of happens-before information between
threads.

In the setting of locks, a thread performs an acquire operation in order to “learn”
the happens-before information stored in a lock. By performing a release operation,
a thread deposits its happens-before information onto a lock. In the setting of chan-
nels, we can think of happens-before as being transferred via sends and receives.

Figure 4.3 contains snippets from Go’s implementation of the send and receive
operations. Unsurprisingly, Go implements a channel of capacity C as an array of
length C. This array is contained in a struct called hchan. Struct member sendx
is the index where a new message is to be deposited, while recvx is the index of
the next message to be retrieved. Function chanbuf takes a channel struct and an
index—the function returns a pointer to the channel’s array at the given index. Note
from lines 20 to 23 that a channel array is treated as a circular buffer.

When data-race detection is enabled, each channel array entry becomes associ-
ated with a vector clock. Also, when detection is enabled, a send operation (List-
ing 4.1) generates calls to acquire and release—lines 11 to 14. The acquire causes
the sender to “learn” the happens-before (HB) information associated with the chan-
nel entry at c.sendx. The release causes the thread’s HB information to be stored
back into that entry.2 The receive operation is similarly implemented and shown in
Listing 4.2.

In light of the implementation described above, we now revisit the message pass-
ing and mutual exclusion examples of Section 4.2. In the case of message passing, a
thread sends a message onto a channel of capacity one, then another thread receives
this message before accessing a shared resource—see Figure 4.1a. According to the

2In the implementation of the send operation, a message is moved from the sender’s buffer to a
receiver’s buffer ep on line 16. The index c.sendx is incremented in line 20 and the increment wraps
around based on the length of the array—lines 21 to 23. The number of elements in the array is incre-
mented, the lock protecting the channel is unlocked and the function returns—lines 24 to 26.

97

Listing 4.1: Send.
1 func chansend(c *hchan,
2 ep unsafe.Pointer ,
3 block bool ,
4 callerpc uintptr)
5 bool {
6 ...
7 lock(&c.lock)
8 ...
9 if c.qcount < c. dataqsiz {

10 qp := chanbuf(c , c .sendx)
11 if raceenabled {
12 raceacquire (qp)
13 racerelease (qp)
14 }
15
16 typedmemmove(c.elemtype,
17 qp, ep)
18
19
20 c.sendx++
21 if c.sendx == c. dataqsiz {
22 c.sendx = 0
23 }
24 c.qcount++
25 unlock(&c.lock)
26 return true
27 }
28 ...
29 }

Listing 4.2: Receive.
1func chanrecv(c *hchan,
2ep unsafe.Pointer ,
3block bool)
4(selected ,
5received bool) {
6...
7lock(&c.lock)
8...
9if c.qcount > 0 {
10qp := chanbuf(c , c . recvx)
11if raceenabled {
12raceacquire (qp)
13racerelease (qp)
14}
15if ep != nil {
16typedmemmove(c.elemtype,
17ep, qp)
18}
19typedmemclr(c.elemtype, qp)
20c. recvx++
21if c. recvx == c. dataqsiz {
22c. recvx = 0
23}
24c.qcount−−
25unlock(&c.lock)
26return true , true
27}
28...
29}

Figure 4.3: Snippets of Go’s send and receive operations from runtime/chan.go.

data-race detector’s implementation, the channel array entry at index 0 observes an
acquire followed by release on behalf of the sender. Then, again, a sequence of
acquire followed by release on behalf of the receiver. In effect, the happens-before
information of the sender is transferred to the receiver: specifically, the release by
T 0 followed by the acquire by T 1 places T 0’s write operation in happens-before
relation with respect to T 1’s read operation. The message passing example of Fig-
ure 4.1 is thus deemed properly synchronized by the Go data-race detector.

We can reason about the mutual exclusion example of Figure 4.1b in similar
terms. A thread sends onto a channel, accesses a shared resource, and then receives
from the channel. With the receive operation, this thread deposits its happens-before
information onto the channel—line 13 of Listing 4.2. The second thread then ac-
quires this happens-before information when it sends onto the channel—line 12 of
Listing 4.1. Again, the Go data-race detector’s implementation correctly deems the
example as properly synchronized.

98

4.4.1 The bug

Although the Go data-race detector behaves correctly on the message-passing and
mutual-exclusion examples, the detector’s implementation does not reflect the Go
memory model specification. The acquire/release sequence performed on behalf of
send and receive operations follows the typical lock usage. Channel programming
is, however, different from lock programming. The current implementation of the
detector leads to an accumulation of happens-before information associated with
channel entries. This monotonic growth of happens-before information, however, is
not prescribed by the Go memory model.

In the example that follows, we illustrate the mismatch between (1) the imple-
mentation of the data-race detector and (2) the memory model specification. We
show how this mismatch leads to over-synchronization and the under reporting of
data races.

T 0 T 1 T 2
c← 0 c← 0 ← c
z := 42 load z
← c

Figure 4.4: Example that highlights a mismatch between the Go memory model and
the Go data-race detector implementation. (Capacity of channel c equals one).

Let c in Figure 4.4 be a channel of capacity one. The example is then a mix
of mutual exclusion and message passing: T 0 is using the channel as a lock in an
attempt to protect its access to a shared variable,3 and we can interpret T 1 as using
the same channel to communicate with T 2.4 Now, consider the interleaving in which
T 0 runs to completion, followed by T 1, then T 2—shown in Trace 4.7. Is the write
to z by T 0 in a race with the read of z by T 2?

(c← 0)T 0 (z := 42)T 0 (← c)T 0 (c← 0)T 1 (← c)T 2 (load z)T 2 (4.7)

The original Go data-race detector does not flag these accesses as racy:5 T 0 releases
its happens-before (HB) by sending on the channel. This HB is stored in the vec-
tor clock associated with c’s 0th array entry. The send by T 1 performs an acquire
followed by a release, at which point the VC associated with the entry contains the
union of T 0’s and T 1’s happens-before. Finally, the receive by T 2 performs an ac-
quire and a release, causing T 2 to learn the happens-before of T 0 and T 1. Formally,

3The send operation by T 0 is analogous to acquire and the receive to release.
4Recall that the mutual exclusion and message passing patterns were introduced in Figure 4.1 and

discussed in Section 4.2.
5GitHub issue https://github.com/golang/go/issues/37355

https://github.com/golang/go/issues/37355

99

the data-race detector derives a happens-before relation between the write and the
read as follows:

z := 42 ⊏hb ← c by T 0 via program order
← c by T 0 ⊏hb c← 0 by T 1 release by T 0, acquire by T 1

c← 0 by T 1 ⊏hb ← c by T 2 release by T 1, acquire by T 0
← c by T 2 ⊏hb load z via program order

z := 42 ⊏hb load z via transitivity of HB

According to the Go memory model specification, however, the receive from c
in T 0 is not in happens-before relation to the send in T 1. Instead, the receive is in
happens-before relation to the completion of the send! Information about the write to
z by thread T 0 is transmitted to T 1, but this information is only incorporated into T 1
after the thread has transmitted its message to T 2. Therefore, T 2 does not receive
T 0’s happens-before information. In other words, according to the Go memory
model, there is no chain of happens-before connecting T 0 to T 2. The trace captured
by equation (4.7) is thus racy, with the race depicted in Figure 4.5. Specifically, the
race is captured by the absence of a path between the write to z in T 0 and the load
of z in T 2.

T 0 T 1 T 2

c← 0

z := 42

← c c← 0

← c

load z

po

po

po

rule 1
rule 2

rule 1

Figure 4.5: Partial order on events according to the Go memory model. The HB
relation is represented by arrows labeled with the Go memory model rule justify-
ing the arrow’s existence. The top part of the half-circle corresponds to a channel
operation and the bottom to its completion.

The Go memory model calls for a mix between channel communication as de-
scribed by Lamport [56] and lock programming. Lamport [56] was studying dis-
tributed systems in the absence of shared memory: the shared resources were the
channels themselves, and the absence of races (of channel races) was related to
determinism. In contrast, Go employs channels as a primitive for synchronizing

100

memory accesses. In Go, some happens-before relations are forged solely between
communicating partners—these relations are derived from rule (I), which is also
present in [56]. Similar to lock programming, some happens-before relations are
the result of an accumulation of effects from past interactions on a channel. This
accumulation occurs when we incorporate rule (II), which is not present in [56]. So,
while the language favors a discipline where an implicit notion of variable ownership
is transferred via direct communication, as prescribed by rule (I), by incorporating
rule (II), Go also supports the use of channels as locks.

4.5 The fix: capturing the semantics of channels

The repair to the Go data-race detector’s deviation from the memory model spec-
ification comes from acknowledging that a primitive, different from acquire and
release, can better fit the semantics of synchronization via channel communication.
We propose the primitive depicted in Figure 4.6, which we call release-acquire-
exchange or rea. Let Tt be the happens-before information of thread t, m be
the channel entry where a message will be deposited or retrieved, and Cm be the
happens-before information associated with m. The primitive is implemented with
a thread releasing onto a place-holder and then acquiring from Cm. The happens-
before in Cm is then overwritten with the HB information from the place-holder.6

We added this new synchronization primitive into TSan, the data-race detection
library that powers the Go data-race detector. With the new primitive in place,
changes to the Go sources became trivial:7 it involved changing sequences of ac-
quire/release calls with a call to release-acquire-exchange.

T′t :=Tt ⊔Cm C′m :=Tt

(Tt ,Cm)⇒rea(t,m) (T′t ,C
′
m)

Figure 4.6: Semantics of “release-acquire-exchange,” a new primitive added to
TSan.

Given the addition of rea into TSan, let us revisit trace (4.7). While the origi-
nal implementation of the Go data-race detector did not flag this trace as racy, the
updated version does. Given the detector’s updated implementation, we can rea-
son about the race as follows. Let TT 0, TT 1, and TT 2 be data-structures storing

6The place-holder is a variable local to a function in TSan, as opposed to an extra memory region
allocated in Go.

7Changes in Go https://golang.org/cl/220419 and TSan https://reviews.llvm.org/
D76322

https://golang.org/cl/220419
https://reviews.llvm.org/D76322
https://reviews.llvm.org/D76322

101

happens-before information of threads T 0, T 1, and T 2. Let Cc[0] be the happens-
before associated with the 0th array entry of channel c. We denote the write event
to z as !z and, for simplicity, we represent happens-before information as a set of
memory events. The race-detector state is then the tuple [TT 0,TT 1,TT 2,Cc[0]], with
initial state [{},{},{},{}]. The data-race detector performs the following transitions
as the program executes:

TT 0 TT 1 TT 2 Cc[0]

[{}, {}, {}, {}]⇒(c←0)T 0

[{}, {}, {}, {}]⇒(z:=42)T 0 (4.8)

[{!z}, {}, {}, {}]⇒(←c)T 0 (4.9)

[{!z}, {}, {}, {!z}]⇒(c←0)T 1 (4.10)

[{!z}, {!z}, {}, {}]⇒(←c)T 2 (4.11)

[{!z}, {!z}, {}, {}]⇒(loadz)T 2 (4.12)

The write to z by T 0 places !z into TT 0—transition from equation (4.8) to (4.9).
Sends and receives are interpreted according to their formal semantics in Figure 4.6.
The receive by T 0 places the write event into the channel-entry’s happens-before—
equations (4.9) and (4.10). The send by T 1 places the write event into the thread’s
happens-before and overwrites the channel-entry’s happens-before with the empty
set—equations (4.10) and (4.11). The receive by T 2 retrieves the empty happens-
before information—equations (4.11) and (4.12). Therefore, at the time T 2 loads
from the shared variable, the write to z by T 0 is not in happens-before with respect
to T 2. In conclusion, the execution is racy.

Note that the fix to the Go data-race detector does not invalidate the use of chan-
nels as locks. Without loss of generality, let the trace below be an execution of the
mutual exclusion example of Figure 4.1b.

(c← 0)T 0 (z := 42)T 0 (← c)T 0 (c← 0)T 1 (z := 43)T 1 (← c)T 1 (4.13)

The detector’s execution, from initial state [TT 0,TT 1,Cc[0]] = [{},{},{}], is

TT 0 TT 1 Cc[0]

[{}, {}, {}]⇒(c←0)T 0

[{}, {}, {}]⇒(z:=42)T 0

[{!z}, {}, {}]⇒(←c)T 0

[{!z}, {}, {!z}]⇒(c←0)T 1

[{!z}, {!z}, {}]

102

Note that the event !z capturing the write by T 0 is contained in TT 1 before T 1
attempts to write to z. In other words, the writes are ordered by happens-before and
the execution is properly synchronized. Thus, the answer to the question raised at
the end of Section 4.2, “is it possible to support the use of channels as locks (as in
the mutex example) and still avoid over-synchronization?” is yes.

We implement the new synchronization primitive rea in TSan with one pass, as
opposed to two passes, over the data-structure storing happens-before information.
Therefore, the updated data-race detector implementation provides better perfor-
mance than the original sequence of acquire followed by release. Another conse-
quence of our fix is a potential reduction in the memory footprint associated with
data-race detection. This savings comes from the fact that vector clocks associated
with channel entries no longer observe as large of an accumulation of happens-
before information—this point was previously touched upon in Section 4.3, Fig-
ure 4.2. We provide a short experimental evaluation next.

Memory footprint Here we illustrate how our fix to the Go data-race detector
leads to a smaller memory footprint. Consider an in-place parallel sorting algorithm
where an array is recursively split, up to some depth, in approximately half. Each
region of the array is assigned to a thread for sorting. When a thread completes
sorting, it signals its parent. The parent merges, in-place, the consecutive array
regions previously assigned to its children.

0 5M 10M 15M 20M
Instructions executed

0

2K

4K

6K

8K

10K

V
C

en
tr

ie
s

Figure 4.7: Number of VC entries associated with channels during the execution of
an in-place parallel sorting algorithm: before (solid line) and after (dashed line) the
introduction of release-acquire-exchange.

We tracked the number of entries in the vector clocks associated with chan-
nel array entries. Measurements of the number of VC entries were taken multi-
ple times during the program’s execution. For ease of collecting and plotting the
data, we modified TSan to call out to a reference data-race detector implemented in

103

Python.8,9 Figure 4.7 shows the number of VC entries before and after the fix to
the data-race detector—meaning, with a race detector that performed an acquire
followed by release versus a race detector that implements the release-acquire-
exchange primitive. The x-axis is the number of instructions executed, the y-axis
is the number of vector-clock entries consumed so far in the execution. As the pro-
gram makes progress, more entries accumulate in the vector clocks associated with
channel entries. This accumulation is much more accentuated before the fix to the
data-race detector. In fact, for this workload, the fix lead to larger than 30% reduc-
tion in the number of VC entries after 12.5M instructions were executed.

4.5.1 From small-step operational semantics to rea

The release-acquire-exchange primitive comes from our previous formalizations of
Go channels. It is conceptually useful to distinguish between happens-before infor-
mation transmitted on behalf of rule (I) versus (II). In Chapter 2, our formalization
split a channel c in two: a forward and a backward one. The forward channel c f
holds messages and thread-local information to be transmitted, as prescribed by
rule (I), from a sender to its corresponding receiver. The backward channel cb,
which flows from a prior receiver to a current sender, captures rule (II) of the mem-
ory model.10

In Chapter 2, threads or goroutines p⟨σ , t⟩ have a unique identifier p, contain
thread-local information σ , and a term t corresponding to the program under execu-
tion. When it comes to data-race detection, thread-local information σ is composed
of happens-before data. This data could be stored in a vector clock or, more simply,
it could be a set of read- and write-events that are in happens-before with respect
to the thread. Synchronization, therefore, entails the exchange of thread-local infor-
mation σ via channel communication.

Configurations consist of the parallel composition of goroutines, memory events,
and channels. The semantics of Chapter 2 is operational. We give the reduction rules
for sends and receives in Figure 4.8—other rules are omitted and can be found in
the original chapter. The let-construct in R-REC is a binder for the local variable
r in a term t. In the case of R-REC, the let-construct allows t to refer to the value
obtained when receiving from a channel.

According to reduction rule R-SEND, when a thread sends a value v, the thread’s
local state σ is placed on the forward channel alongside v. The rule captures the
placement of the message (v,σ) onto the forward channel as follows: if q2 is the

8https://github.com/dfava/paper.go.mm.drd
9Because of differences in how vector clocks are allocated and managed, the memory gains reported

by the reference data-race detector may be different from TSan’s.
10As noted in Chapter 3, “the interplay between forward and backward channels can also be under-

stood as a form of flow control. Entries in the backward channel’s queue are not values deposited by
threads. Instead, [these entries] can be seen as tickets that grant senders a free slot in the communication
channel.”

https://github.com/dfava/paper.go.mm.drd

104

¬closed(c f [q2]) σ ′ = σ +σ ′′
R-SEND

cb[q1 :: σ ′′] ∥ p⟨σ ,c← v; t⟩ ∥ c f [q2] −→ cb[q1] ∥ p⟨σ ′, t⟩ ∥ c f [(v,σ) :: q2]

v ̸=⊥ σ ′ = σ +σ ′′
R-REC

cb[q1] ∥ p⟨σ ,let r =← c in t⟩ ∥ c f [q2 :: (v,σ ′′)] −→
cb[σ :: q1] ∥ p⟨σ ′,let r = v in t⟩ ∥ c f [q2]

Figure 4.8: Send and receive reduction rules in the calculus of Chapter 2.

content of the forward channel before transmission, (v,σ) :: q2 are the contents after.
The transmission of σ models rule (I) of the Go memory model: a receiver who
receives (v,σ) will learn about the sender’s actions up to the given send operation.

Besides transmitting, a sender also learns HB information in accordance to
rule (II). Precisely, the (k +C)th sender obtains, from the backward channel,
thread-local state from the kth receiver. This is captured by the update σ ′ = σ +σ ′′
with the state σ ′′ coming from the backward channel. Thus, if the contents of the
backward channel were q1 :: σ ′′ before the send, the channel is left with q1 after
the send. Note that the update to the sender state occurs on completion of the send
operation: the update “occurs after” the sender has deposited its message onto the
forward channel—concretely, the send transmits the thread state σ as opposed to
the updated thread state σ ′.

When receiving, a goroutine obtains a value v as well as a state σ ′′ from a sender.
As dictated by rule (I), the receiver updates its state given the corresponding sender
state: σ ′ = σ +σ ′′. The sender also deposits its state onto the backward channel.
Similar to R-SEND, the original thread state σ is deposited as opposed to the updated
thread state σ ′.

For both reduction rules R-SEND and R-REC, local thread state σ is deposited
onto a channel as opposed to the update thread state σ ′. This discipline creates a
distinction between an operation and its completion. In effect, the reduction rules
do not cause the over-synchronization observed by the Go data-race detector.

4.5.2 Why not acquire and release?

The formalization of Chapter 2 speaks of synchronization in terms of channel com-
munication. Since TSan operates at the level of locks, we might be tempted to
implement the reduction rules with acquire and release operations. The reduction
rule R-SEND could be implemented with a thread releasing its happens-before in-
formation into the forward queue, and then acquiring happens-before information

105

from the backward queue. Similarly, R-REC can be implemented with a release to
the backward queue, followed by an acquire from the forward queue.

One invariant of the semantics of Chapter 2 is that the number of elements in
the forward and backward queues equals the capacity of the channel. Since a thread
must first release its HB into the channel before acquiring from the channel, there
would be more than C entries in the queues while a send or receive is in-flight.
In fact, when using acquire and release operations as primitives, the Go data-race
detector would need to allocate an array of length C+ 2 for a channel of capacity
C. Given such an array, sends and receives can be implemented with acquire/release
operations as shown in Listings 4.3 and 4.4. Recall that c.sendx and c.recvx are
the indices into the array where the next message is to be deposited and retrieved
respectively. Recall also that chanbuf returns a pointer to a channel’s array at a
given index.

Listing 4.3: Implementation of send.
1 idx := c.sendx+1
2 if idx == C+2
3 idx = 0
4 qf := chanbuf(c , c .sendx)
5 qb := chanbuf(c , idx)
6 racerelease (qf)
7 raceacquire (qb)

Listing 4.4: Implementation of receive.
1idx := c. recvx−1
2if c. recvx == 0
3idx = C+1
4qf := chanbuf(c , c . recvx)
5qb := chanbuf(c , idx)
6racerelease (qb)
7raceacquire (qf)

Although correct, there are major downsides to the solution of Listings 4.3
and 4.4. First, it requires additional memory allocation. Second, because the Go
runtime expects a channel of capacity C to be implemented with an array of length
C, the solution would require intrusive changes. Third, from a timing perspective,
in order to implement a single channel operation, the solution performs two passes
over the data-structure storing happens-before information—we want a solution that
performs less passes.

Compared to acquire and release, the release-acquire-exchange primitive re-
quires no additional allocation in Go, involves minimal changes to the Go runtime,
and has lower overhead.

4.6 Lessons learned

When we started looking at TSan’s source code, our goal was to improve Go’s
data-race detector by expressing synchronization in terms of channels as opposed
to locks [35]. We began reading the source code of Go and TSan in November
2019. In January 2020, we started experimenting by compiling the projects from
source and making modifications in order to gain experience and intuition. This tin-
kering lead us to find, in early and mid February, a small Go compiler bug11 and a

11https://github.com/golang/go/issues/37012

https://github.com/golang/go/issues/37012

106

small performance bug in TSan.12 Shortly after, around late February, we found the
bug described in this chapter.

Given our experience formalizing the calculus in Chapter 2, we could see sim-
ilarities between our reduction rules and the Go implementation.13 The implemen-
tations of send and receive, however, stood out. The bug was thus found by inspec-
tion. We created a test (Figure 4.4) to showcase what we believed was discrepancy
between the detector and the memory model. From there, we filed an issue on
GitHub and started interacting with the Go community. With this interaction, which
went until May, an initial patch was iteratively improved until being accepted for
release.14

In this section, we collect insights drawn from our experience in both (1) for-
malizing aspects of the Go programming language and (2) interacting with the TSan
and Go communities.

Models do not have to be right, they have to be useful

In Chapter 2, we developed a memory model based on the Go specification. Be-
fore embarking on studying the Go source code, we found ourselves at cross-roads.
Since our model is not as relaxed as Go’s, more theoretical research remained to be
done. We pondered whether to continue working on formalizations or whether to
investigate how the current model fits the “real world.” Both avenues are interesting
to us. By taking, for now, the second avenue, we learned that models do not have to
be right, they have to be useful. Our memory model formalization in Chapter 2 is
not the memory model of Go, but it is close enough to allow us to reason about Go
and its implementation.

Mind the gap

In one hand, we have the concept of a data-race according to the synchronization
rules of the Go memory model specification. The specification is expressed in En-
glish. On the other hand, we have the Go data-race detector implementation, with
thousands of lines of code spawning different projects and repositories and involving
at least three languages (Go, C/C++, and assembly). These are two ends of a spec-
trum. Our model was useful, in part, because of where it sits in this spectrum. When
developing the model in Chapter 2, we followed the English text of the Go mem-
ory model specification very closely. Our model, however, is expressed in structural
operational semantics—its rules form an executable implementation. Our calculus,

12https://reviews.llvm.org/D74831
13For example, the closing of channels in both Chapter 2 and in Go cause happens-before information

to be deposited onto the channel, regardless of whether the channel is full.
14See the release notes for Go 1.16 in https://golang.org/doc/go1.16

https://reviews.llvm.org/D74831
https://golang.org/doc/go1.16

107

therefore, forms a bridge between source code and the specification expressed in
natural language.15

Bad news is good news

The effort in formalizing and proving a nontrivial property of a software system is
often high. Before finding the issue described in this chapter, we had been working
on formalisms related to Go for over two years. This high barrier of entrance is
both good and bad. It is good, less obviously so, because it opens opportunities for
collaboration between industry and academia. While industry excels at delivering
software, academia can provide artifacts, such as formalisms and proofs, which are
still not as commonly produced in industry.16

4.7 Conclusion

The bug described in this chapter evaded skilled developers for about six years,
nearly since the data-race detector was bolted onto the Go runtime. In this chapter,
we share how formal methods played an integral role in bringing the issue to light,
and giving it closure.

15Our observation about the representational different between specification and implementation is
not new. The idea of bridging specification and implementation has been tackled by many fronts, for
example [7].

16Because of stigma, the “formal” qualifier has been de-emphasized when disseminating formal meth-
ods in industry [75]. This stance has shifted dramatically [23].

5Incorporating load buffering
into the memory model

By allowing multiple writes to the same memory location to co-exist, the semantics
introduced in Chapter 2 leads to a form of relaxation called delayed writes. Although
fairly relaxed, the resulting memory model precludes load buffering. In this chapter,
we explore mechanisms for supporting load buffering—which we refer to as delayed
reads. We conjecture that a delayed read/write semantics, meaning, the combination
of delayed reads with the memory model of Chapter 2, can precisely capture the Go
memory model specification.

5.1 Introduction

In Chapter 2, we introduced a delayed-write memory model inspired by the Go
programming language—where synchronization takes place via channel communi-
cation. Delayed writes are handled by allowing multiple stores to the same shared
variable to coexist. Think of how there can be multiple copies of a “variable” in
hardware: in a stale cache entry, as entries in a processor’s write-buffers, and in
memory. When it comes to our semantics, these copies exist as terms in a run-time
configuration—see the runtime configuration in equation (2.6) on page 27 for the
delayed-write run-time configuration.

In this chapter, we extend the memory model of Chapter 2 by introducing de-
layed reads, which account for load buffering. With delayed reads, a handle is
obtained before a concrete value is finally observed. This relaxation introduces new
behavior to the execution of a program: at the moment a read observes a concrete
value, additional writes may be present and available to service the read operation—
writes that would not have already been executed earlier when the read was issued.
To illustrate, consider the following trace where threads p1 and p2 write values v1
and v2 to z, followed by p0 issuing a read of z, p3 executing a write of value v3 to z,
and p0’s read being serviced with a concrete value.

(z!v1)p1 (z!v2)p2 (z?_)p0 (z!v3)p3 (z?v)p0

Note that we make a distinction between the read being issued, (z?_)p0 , and the read
being serviced, (z?v)p0 . The underscore in (z?_)p0 is representing a place holder that
is to be filled at some point in the future—the place holder is filled with a concrete
value when the read is serviced. In the delayed write semantics of Chapter 2, reads

109

110

are not delayed; meaning that there exists no distinction between when a read op-
eration is issued and when it is “concretized” or “serviced.” Therefore, according
to the delayed write semantics, v1 and v2 are the only values available to service
the read if p0 executes before p3. However, by delaying the concretization of the
read until after the execution of p3, the delayed read/write semantics introduces new
possibilities. For example, the read can observe the value of v3 in addition to the
values of v1 and v2.

We start by introducing delayed reads to a language with only memory events.
In Section 5.2, we show how delayed reads can introduce circular dependencies.
These dependencies lead to out-of-thin-air (OOTA) behavior in axiomatic seman-
tics. In the case of our executable semantics, circularity can lead to non-terminating
reductions—even for programs that terminate under sequential consistency. In Sec-
tion 5.3 we discuss conditionals and the possibility of branching on a symbolic (as
opposed to concrete) value. The interaction of branching and delayed reads can
lead to OOTA behavior in both axiomatic as well as in the semantics explored in
Section 5.3. We are of the believe that an executable semantics, like hardware, can
support delayed read/write events without introducing OOTA and non-termination.
To that end, more research is needed and, in this chapter, we point out open questions
along the way. We end the chapter by discussing channel operations and the sending
of a symbolic value over a channel in Section 5.4 before concluding in Section 5.5.

5.2 Delaying reads in a setting without conditionals

Here we introduce load buffering (aka. delayed reads) to a very simple language.
To help us gain intuition, we start with motivating examples. The examples differ
in the extent that reads depend on prior writes. In the simplest case, there is no
dependence.

Example 3 (Load buffering, no data dependence). The code of Listing 5.1 shows
the simplest illustration of load buffering. There are two threads, each performs a
load followed by a store. Note that there is no data dependence between the load
and the store within a thread.

T 1 T 2
r1 := x r2 := y
y := 23 x := 42

Listing. 5.1: Load buffering, no data dependence

Note also that the stores occur at the end of each thread, which means that
write delays do not come into play. Indeed, both a sequentially consistent memory
model and the model of Chapter 2 produce the same results. In particular, they

111

forbid the post-condition (r1,r2) = (42,23). This post-condition would imply that
at least one load completed after the write within a thread: Observing, for instance
r1 = 42 implies that x must have been written before—see the read-from edge in the
candidate execution graph of Figure 5.1, noting that r f stands for the read-from
relation. Due to program order, this prior write would imply that r2 = y must have
been read before. Since the writing to y comes after the read of x, then y must still
be 0, which precludes the result (r1,r2) = (42,23).

We would like, however, for a weak memory model to be able to produce (42,23).
The absence of a data dependency allows each thread to execute its instructions out-
of-order. In terms of candidate executions, this example1 is captured by Figure 5.1.

T 1 T 2

(n1:Rx = 42)

(n2:Wy = 23)

(n3:Ry = 23)

(n4:Wx = 42)

po

rf

po

rf

Figure 5.1: Candidate execution for load buffering with no data dependence

Example 4 (Load-buffering, non-circular data dependence). Listing 5.2 shows a
slight generalization2 of the LB example from Listing 5.1. Like in the previous ex-

T 1 T 2
r1 := x r2 := y
y := r1 x := 42

Listing. 5.2: Load buffering, no circular dependence

ample, the program of Listing 5.2 behaves the same under a sequentially consistent
memory model as well as the delayed-write semantics of Chapter 2 . These memory
models preclude r2 = 42 and, instead, can produce the following results for (r1,r2)
at termination: {(42,0),(0,23),(0,0)}.

1Figure 5.1 resembles Figure 5.2 except that, since there is no data dependence here, the ppo-edge
is not present.

2The example corresponds to the LB example of Maranget et al. [65, Section 7]. The example is also
mentioned in Valle [99] to illustrate how a “delayed-writes” model (such as the one in Chapter 2) is not
as relaxed as we would like it to be.

112

T 1 T 2

(n1:Rx = 42)

(n2:Wy = 23)

(n3:Ry = 23)

(n4:Wx = 42)

ppo

rf

po

rf

Figure 5.2: Candidate execution for load buffering with no circular dependence

Note that there is a data dependence between the read and the subsequent write
in T 1 and that there is no such dependence in T 2. From a local perspective, T 2’s
instructions can be swapped because the swap does not alter the thread’s behavior.
The swap does, however, alter the behavior of the program, which is the composition
of T 1 and T 2. In particular, the swap of T 2’s instructions introduce (42,42) as a
possible program outcome. The difference between T 2’s dependency and T 2’s lack
of data dependency is captured by the→ppo (preserved program order) versus the
→po (program order) arrows in Figure 5.2.

We can also justify r2 = 42 by arguing that since there is no happens-before
relation across the threads, each read can observe the write on the opposite thread.
In particular, r1 can read 42, then store it in y, and that can be read by the second
thread into r2.

Next, we explore the idea of delaying or buffering the load of y in T 2.

Load-buffering and read events. The result (42,42) can be obtained from List-
ing 5.2 by delaying the effect of r2 := y in the second thread, in other words, to
execute that statement asynchronously. From the point of view of our semantics and
its notation, such delay is achieved by adding read events, which are tuples of the
form

n[(?y)] .

A reduction3 showcasing how read events work is sketched in equation (5.1). For

clarity, the reduction also uses labeled transitions with
n(z!v)p2−−−−→ representing a write

and
n(z?5)p2−−−−−→ a read. We do not always fill-in all components of a transition; for

3The avid reader may notice that in this chapter, we are interpreting r := e; t as let r := e in t,
which is a slight departure from the notation of Chapter 2.

113

instance, if we do not yet know the value of a variable that is being read, then the
value is left out of the corresponding label.

⟨σ1,r1 := x;y := r1;r1⟩ ∥ ⟨σ2,r2 := y;x := 42;r2⟩
p2(y?_)n2−−−−−→

⟨σ1,r1 := x;y := r1;r1⟩ ∥ ⟨σ2,x := 42;n2⟩ ∥ n2[(?y)]
p2(x!42)m1−−−−−−→

⟨σ1,r1 := x;y := r1;r1⟩ ∥ ⟨σ ′2,n2⟩ ∥ n2[(?y)] ∥ m1(|x:=42|)
p1(x?_)n1−−−−−→

⟨σ1,y := n1;n1⟩ ∥ ⟨σ ′2,n2⟩ ∥ n1[(?x)] ∥ n2[(?y)] ∥ m1(|x:=42|) deref−−−→
⟨σ1,y := n1;n1⟩ ∥ ⟨σ ′2,n2⟩ ∥ n1[(?42)] ∥ n2[(?y)] ∥ m1(|x:=42|) −→

⟨σ1,y := 42;42⟩ ∥ ⟨σ ′2,n2⟩ ∥ n1[(?42)] ∥ n2[(?y)] ∥ m1(|x:=42|)
m2(y!42)p1−−−−−−→

⟨σ1,42⟩ ∥ ⟨σ ′2,n2⟩ ∥ n1[(?42)] ∥ n2[(?y)] ∥ m1(|x:=42|) ∥ m2(|y:=42|) deref−−−→
⟨σ1,42⟩ ∥ ⟨σ ′2,n2⟩ ∥ n1[(?42)] ∥ n2[(?42)] ∥ m1(|x:=42|) ∥ m2(|y:=42|) −→
⟨σ1,42⟩ ∥ ⟨σ ′2,42⟩ ∥ n1[(?42)] ∥ n2[(?42)] ∥ m1(|x:=42|) ∥ m2(|y:=42|) .

(5.1)

In the second configuration in equation (5.1), a read has been issued, leading to an
event n2[(?y)]. The local variable r2 is now represented by the new name n2. In fact,
every occurrence of r2 is replaced by n2 in that thread.

The next step issues a write event. If the second thread would then perform its
last step and dereference n2, the thread would not find any non-shadowed write4 to
y other than y’s initial value. The core of the example, however, is the fact that now
the first thread is allowed to execute before this dereferencing takes place. The first
thread starts by reading x. This read is also delayed, thus generating n1. However,
since the delay associated with n1 is not interesting, we let the dereferencing take
place right away: the read to x, as captured by n1, is serviced by the write event that
wrote 42 to x. In the next step, the write of 42 into y is issued, leading to the event
m2(|y:=42|).

At this point, the “earlier” read marked by n2 is dereferenced. Note that we can
now execute a step that was not possible in the delayed-write semantics of Chapter 2.
The introduction of delayed reads created the possibility of servicing the read of y
with the write m1(|y:=42|). We are then left with (r1,r2) = (42,42).

The machinery involved in the above reduction introduces a certain amount of
relaxation in the direction of load-buffering. The reduction above is still overly
eager in the sense that there are no symbolic writes, meaning, there are no attempts
to write a handle n. The eagerness lies in the treatment of the first thread. When p1
executes the write y := n1, the derivation dereferences n1 to 42 opposed to writing
the handle n1. Nonetheless, we are still able to obtain the desired relaxed behavior
despite the absence of symbolic writes.

4The concept of shadow percolates the thesis starting on Chapter 2.

114

Next, we craft a more complex example in order to show the need of symbolic
writes.

Example 5 (Longer delay). Building on Listing 5.2, we create a situation where
symbolic writes are called for. In a relaxed memory environment, it is desirable for

T 1 T 2
r1 := x r2 := z
y := r1 x := r2
z := 42

Listing. 5.3: Longer delay

the code in Listing 5.3 to produce an execution in which y contains 42. In terms of
swapping, this result comes from performing the assignment of z := 42 before the
read of x and the write to y. The candidate execution justifying y = 42 is given in
Figure 5.3.

T 1 T 2

(n1:Rx = 42)

(n2:Wy = n1→ 42)

(n3:Wz = 42)

(n4:Rz = 42)

(n5:Wx = 42)

ppo

po

rf

ppo
rf

Figure 5.3: Candidate execution for “longer delay” example

As shown in the reduction below, in order for y to contain 42, we need the write

115

to y in p1 to store a handle as opposed to an actual value.

⟨σ1,r1 := x;y := r1;z := 42;r1⟩ ∥ ⟨σ2,r2 := z;x := r2;r2⟩
p1(x?_)n1−−−−−→

⟨σ1,y := n1;z := 42;n1⟩ ∥ ⟨σ2,r2 := z;x := r2;r2⟩ ∥ n1[(?x)]
p1(y!n1)n2−−−−−−→

⟨σ ′1,z := 42;n1⟩ ∥ ⟨σ2,r2 := z;x := r2;r2⟩ ∥ n1[(?x)] ∥ n2(|y:=n1|)
p1(z!42)n3−−−−−−→

⟨σ ′′1 ,n1⟩ ∥ ⟨σ2,r2 := z;x := r2;r2⟩ ∥ n1[(?x)] ∥ n2(|y:=n1|) ∥ n3(|z:=42|)
p2(z?_)n4−−−−−→

⟨σ ′′1 ,n1⟩ ∥ ⟨σ2,x := n4;n4⟩ ∥ n1[(?x)] ∥ n2(|y:=n1|) ∥ n3(|z:=42|) ∥ n4[(?z)]
deref−−−→

⟨σ ′′1 ,n1⟩ ∥ ⟨σ2,x := n4;n4⟩ ∥ n1[(?x)] ∥ n2(|y:=n1|) ∥ n3(|z:=42|) ∥ n4[(?42)] −→

⟨σ ′′1 ,n1⟩ ∥ ⟨σ2,x := 42;42⟩ ∥ n1[(?x)] ∥ n2(|y:=n1|) ∥ n3(|z:=42|) ∥ n4[(?42)]
p2(x!42)n5−−−−−−→

⟨σ ′′1 ,n1⟩ ∥ ⟨σ ′2,42⟩ ∥ n1[(?x)] ∥ n2(|y:=n1|) ∥ n3(|z:=42|) ∥ n4[(?42)] ∥ n5(|x:=42|) deref−−−→
⟨σ ′′1 ,n1⟩ ∥ ⟨σ ′2,42⟩ ∥ n1[(?42)] ∥ n2(|y:=n1|) ∥ n3(|z:=42|) ∥ n4[(?42)] ∥ n5(|x:=42|) −→
⟨σ ′′1 ,42⟩ ∥ ⟨σ ′2,42⟩ ∥ n1[(?42)] ∥ n2(|y:=n1|) ∥ n3(|z:=42|) ∥ n4[(?42)] ∥ n5(|x:=42|) −→
⟨σ ′′1 ,42⟩ ∥ ⟨σ ′2,42⟩ ∥ n1[(?42)] ∥ n2(|y:=42|) ∥ n3(|z:=42|) ∥ n5(|x:=42|)

(5.2)

Execution starts with a read of x into r1 and a write of r1 into y. Unlike in the
previous examples, the process is not yet in possession of a concrete value, so it
stores a handle n1 instead.5 Once x has been written the value of 42, the delayed
read of x can be concretized (i.e., the last deref in the equation). At this point, the
symbolic write n2, which references n1, can also be concretized. This leads to the
result of y = 42 at the end of execution.

5.2.1 Regulating observability

Without proper bookkeeping, when reads and writes are delayed, the final configu-
ration becomes a soup of unordered memory events. In this extreme scenario, reads
can access any write event, as none of the writes shadow each other. Ignoring even
program order, this scenario would allow for prophetic reads, meaning, the reading
of values from “the future,” such as the load of x observing the value of 42 from the
subsequent write in r = x; · · · ;x := 42. In this extremely relaxed semantics, reads
can only observe values that were written at some point—this makes it seem like the
semantics precludes out-of-thin-air results.

Besides being a thought exercise, such an extremely relaxed (and quite unrealis-
tic) semantics can be a departing point for design. What we need to do is to impose
program order and thus preclude:

1. prophetic reads, which are reads that observe values from the future, and
5Note that steps 4 and 5 of the second process are similar: they involve a read followed by a write

where the write depends on the value being read. However, in this case, we concretize the value before
the write because a delay would not be interesting here.

116

2. outdated reads, which are reads that observe shadowed values.

These two forms of reads correspond to the two negative observability conditions in
the Go memory model. Precisely, the model states that “ a read r of a variable v is
allowed to observe a write w to v if both of the following hold” [40]

r does not happen before w. (5.3)
There is no other write w′ to v that happens after w but before r. (5.4)

In the delayed writes semantics of Chapter 2, the situation described by equa-
tion (5.3) could not happen. The delayed writes semantics prevents a load from
observing the result of a future write6 simply because the identity of the write is not
available when the read takes place. In that semantics, the we only had to protect
reads from observing outdated writes. This protection was accomplished by the in-
troduction of shadow sets. The semantics also kept track of happens-before sets, but
these took a lesser role: The happens-before sets existed as a way to keep shadow
sets updated.

With the introduction of delayed reads, we must prevent prophetic reads in addi-
tion to shadowed reads. In the case of prophetic reads, the key to regulating observ-
ability is to switch perspective: instead of thinking about what the read can observe,
concentrate on how writes lend their values to observers. A write event must track
the reads that are in its past, and it must preclude the written value from being ob-
served by these past reads.

In contrast with the delayed write semantics of Chapter 2, the introduction of de-
layed reads elevates the concept of happens-before set to the same level as shadow-
sets: both sets now regulate observability. We then have the following symmetry:

A read cannot observe a shadowed write, and
a write cannot publish to a happened-before read.

As we will see next, the reduction rules for the semantics follow naturally from
this discussion.

5.2.2 Reduction rules

The reduction rules for delayed reads and writes are given in Figure 5.4. Memory
events related to reads are in green and writes in red. Just like in the reduction rules
from previous chapters, the ν-binder, known from the π-calculus, indicates dynamic
scoping [71].

Instead of performed eagerly, reads and writes generate events which record the
state σ of the thread at the time the event was generated, and the “intention” of the
event. In the case of a read, the intent of observing a value associated with a variable.

6For example a future write within the same thread.

117

σ = (Ehb,Es) σ ′ = (Ehb +(n, !z),Es +Ehb(!z)) fresh(n)
R-WRITE

p⟨σ ,z := v; t⟩ −→ νn (p⟨σ ′, t⟩ ∥ n(|σ ,z := v|))

σ = (Ehb,_) σ ′ = (Ehb +(n,?z),_) fresh(n)
R-READ

p⟨σ ,let r = load z in t⟩ −→ νn (p⟨σ ′,let r = n in t⟩ ∥ n[(σ ,load z)])

m /∈ Er
s (n,_) /∈ Ew

hb R-DEREF
n[((Er

hb,E
r
s),load z)] ∥ m(|(Ew

hb,E
w
s),z := v|) −→

n[((Er
hb,E

r
s),z,v)] ∥ m(|(Ew

hb,E
w
s),z := v|)

R-SUBSTW
P ∥ n(|_,_ := v|) −→ P[v/n] ∥ n(|_,_ := v|)

R-SUBSTR
P ∥ n[(_,_,v)] −→ P[v/n] ∥ n[(_,_,v)]

Figure 5.4: Operational semantics with delayed reads (i.e., load buffering) as well
as delayed writes: memory access rules.

In the case of a write, the intent of associating a new value with a variable. The ob-
servability rule R-DEREF is responsible for fulfilling this intent by associating a read
to a write. R-DEREF captures the two observability restrictions detailed in the Go
memory model: the one preventing shadowed reads, as captured by equation (5.4),
and the other preventing prophetic reads, equation (5.3).

Notice that, when doing a read, we now record the read event on the happens-
before set of the reading thread. Compared to the reduction rules from Chapter 2,
we now distinguish between read (?) an write (!) events in happens-before sets. The
syntax Ehb(!z) means the labels of all writes to z in Ehb—note from rule R-WRITE
that only prior writes get shadowed by a new write. Note also that read and write
labels are values, so we can have a chain of indirections: the R-DEREF rule can
dereference a load even when the corresponding write-event stores a symbolic value.

Rules R-SUBSTW and R-SUBSTR allow for the substitution of a value v that
is associated with a handle n. These rules have no premise. Substitution is “safe”
because, by the time it takes place, prior reductions7 must have already verified the
necessary constraints related to shadowing and happens-before.

7By prior reductions we mean prior R-READ, R-WRITE, or R-DEREF reductions.

118

Next, we illustrate the reductions with an example. The example shows how the
semantics prevents out-of-thin-air behavior at the cost of non-termination.

Example 6 (No out-of-thin-air). Here we show how the semantics precludes a pro-
totypical out-of-thin-air result associated with load buffering. Given the code below,
it is important to forbid the possibility of producing r1 = r2 = 42. In fact, any value
for r1 and r2, other than 0, is considered out-of-thin-air.

T 1 T 2
r1 := x r2 := y
y := r1 x := r2

Note that we translate the example to the syntax of Chapter 2, which uses, for ex-
ample, the let-construct. Execution starts in equation (5.5). The write events n0 and
n1 represent the initial value of variables x and y; recall that σ⊥ is the empty state
(Ehb,Es) = (/0, /0). Initial thread states σ1 and σ2 are both ({(n0, !x),(n1, !y)}, /0)
meaning that the initialization of the shared variables x and y happens-before the
threads’ initialization, and that no shadowing has occurred since no variables have
been written to.

Without loss of generality, we start with the first thread, which loads from the
shared variable and executes its let-construct, and similarly for the second thread.
The question is, what values can r1 and r2 assume at the end of execution, where the
values are associated with the read events n2 and n3 respectively.

⟨σ1,let r1 = load x in y := r1⟩ ∥ ⟨σ2,let r2 =load y in x := r2⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|)
p1(x?_)n2−−−−−→

⟨σ ′1,let r1 = n2 in y := r1⟩ ∥ ⟨σ2,let r2 =load y in x := r2⟩ ∥
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?x)] let−→

⟨σ ′1,y := n2⟩ ∥ ⟨σ2,let r2 = load y in x := r2⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?x)]
p2(y?_)n3−−−−−→

⟨σ ′1,y := n2⟩ ∥ ⟨σ ′2,let r2 = n3 in x := r2⟩ ∥
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?x)] ∥ n3[(σ2,?y)] let−→

⟨σ ′1,y := n2⟩ ∥ ⟨σ ′2,x := n3⟩ ∥
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?x)] ∥ n3[(σ2,?y)]

(5.5)

At this point, we can reduce the assignments. These reductions can also be done in

119

any order. Let us start with the second thread.

⟨σ ′1,y := n2⟩ ∥ ⟨σ ′2,x := n3⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?x)] ∥ n3[(σ2,?y)]
(x!n3)n4−−−−→

⟨σ ′1,y := n2⟩ ∥ ⟨σ ′′2 ,⟩ ∥
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?x)] ∥ n3[(σ2,?y)]

n4(|σ ′2,x := n3|)
(y!n2)n5−−−−→

⟨σ ′′1 ,⟩ ∥ ⟨σ ′′2 ,⟩
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?x)] ∥ n3[(σ2,?y)] ∥
n4(|σ ′2,x := n3|) ∥ n5(|σ ′1,y := n2|)

(5.6)

Threads have now been reduced to the empty term. R-DEREF is the only rule
that can be applied. Given that the thread states are:

σ ′1 =({(n0, !x),(n1, !y),(n2,?x),}, /0)
σ ′2 =({(n0, !x),(n1, !y),(n3,?y),}, /0)
σ ′′1 =({(n0, !x),(n1, !y),(n2,?x),(n5, !y),},{(n1, !y),})
σ ′′2 =({(n0, !x),(n1, !y),(n3,?y),(n4, !x),},{(n0, !x),})

then both writes to x (the one in n0 and the one in n4) can service the read of x
associated with n2. Similarly, both the writes to y, which are n1 and n5, can service
the read of y associated with n3. Let us look at all these possibilities:

Observing the initial values of x and y. The case in which the reads of x and y
observe the initial value of the shared variables is captured by n2 and n3 being ser-
viced by n0 and n1 respectively. This case does not involve load buffering, and there
is no possibility for circular reasoning. Although not shown here, the configuration
reduces to a term where all reads and writes have been “concretized,” meaning, there
are no terms of the form:

n[(σ ,?n′)] or n(|σ ,_ := n′|)

Load buffering on one thread. The scenario covers the case in which load buffer-
ing plays a role in one of the threads’ load but not the other. In this scenario, there
are two symmetrical sub-cases:

1. n2 is serviced by n4 while n3 is serviced by the initial value of y, or

2. n3 is serviced by n5 while n2 is serviced by the initial value of x.

120

In either of the sub-cases, we have (r1,r2) = (0,0) at the end of execution, and
the configuration reduces to concrete terms. Take for example sub-case 1, starting
with the end configuration from equation (5.6)—note that we drop the threads for
convenience:

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?x)] ∥ n3[(σ2,?y)] ∥
n4(|σ ′2,x := n3|) ∥ n5(|σ ′1,y := n2|)

deref−−→

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,x,n4)] ∥ n3[(σ2,?y)] ∥
n4(|σ ′2,x := n3|) ∥ n5(|σ ′1,y := n2|)

deref−−→

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,x,n4)] ∥ n3[(σ1,y,0)] ∥
n4(|σ ′2,x := n3|) ∥ n5(|σ ′1,y := n2|)

substr−−−→

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,x,n4)] ∥ n3[(σ1,y,0)] ∥
n4(|σ ′2,x := n3|) ∥ n5(|σ ′1,y := n4|)

substr−−−→

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,x,n4)] ∥ n3[(σ1,y,0)] ∥
n4(|σ ′2,x := 0|) ∥ n5(|σ ′1,y := n4|)

substw−−−→

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,x,0)] ∥ n3[(σ1,y,0)] ∥
n4(|σ ′2,x := 0|) ∥ n5(|σ ′1,y := n4|)

substw−−−→

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,x,0)] ∥ n3[(σ1,y,0)] ∥
n4(|σ ′2,x := 0|) ∥ n5(|σ ′1,y := 0|)

Load buffering on both threads. Here we have n2 and n3 being serviced by n4
and n5 respectively. In other words, load buffering plays are role in both threads. In
this case, the configuration reduces to the following:

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?x)] ∥ n3[(σ2,?y)] ∥
n4(|σ ′2,x := n3|) ∥ n5(|σ ′1,y := n2|)

deref−−→

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?n3)] ∥ n3[(σ2,?y)] ∥
n4(|σ ′2,x := n3|) ∥ n5(|σ ′1,y := n2|)

deref−−→

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?n3)] ∥ n3[(σ2,?n2)] ∥
n4(|σ ′2,x := n3|) ∥ n5(|σ ′1,y := n2|)

(5.7)

Note the circular dependency between n2 and n3.
At this point, we have different options. For example, by applying SUBSTR on

n2 and n3, the configuration can be reduced to contain a term n2[(σ1,?n2)], where the
value of n2 depends on itself! Although it does not produce an actual out-of-thin-air
behavior, unfortunately the execution terminates in a state where symbolic values

121

cannot be concretized—this situation can be interpreted as a deadlock.

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?n3)] ∥ n3[(σ2,?n2)] ∥
n4(|σ ′2,x := n3|) ∥ n5(|σ ′1,y := n2|)

substr−−−→

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?n2)] ∥ n3[(σ2,?n2)] ∥
n4(|σ ′2,x := n3|) ∥ n5(|σ ′1,y := n2|)

substr−−−→

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?n2)] ∥ n3[(σ2,?n2)] ∥
n4(|σ ′2,x := n2|) ∥ n5(|σ ′1,y := n2|)

Unfortunately, not all reductions of this program are terminating! For example,
going back to the end-state of equation (5.7), the following is a non-terminating
reduction:

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?n3)] ∥ n3[(σ2,?n2)] ∥
n4(|σ ′2,x := n3|) ∥ n5(|σ ′1,y := n2|)

substr−−−→

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?n3)] ∥ n3[(σ2,?n2)] ∥
n4(|σ ′2,x := n2|) ∥ n5(|σ ′1,y := n2|)

substr−−−→

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ1,?n3)] ∥ n3[(σ2,?n2)] ∥
n4(|σ ′2,x := n3|) ∥ n5(|σ ′1,y := n2|)

substr−−−→ ...

The example above shows that programs that terminate under sequential con-
sistency can have non-terminating runs in the delayed read/write semantics! These
non-terminating runs are related to circular dependencies. The same dependencies
caused axiomatic semantics to produce out-of-thin-air behavior. Can we steer re-
ductions towards end-configurations that contain only concrete values? Hardware
does not live- or dead-lock and does not produce out-of-thin-air results under cyclic
dependencies. Our intuition is that an operational semantics that mimics hardware
should also be able to avoid these problems. Certainly that is a simplistic view, as
the issue lays beyond the relaxed nature of hardware and also rests in the interplay
with compiler optimizations. Although we have gained insights, our understanding
is still incomplete. For example, our treatment does not clearly differentiate between
compile-time versus-runtime transformations. We wonder if it is possible to define
a minimal set of assumptions or restrictions that guarantee the well-behavior of a
memory model.

Compared to the delayed write semantics, we show how the delayed/read write
semantics supports certain types of optimizations at the expense of introducing non-
termination. One important observation that came late to us is the following: If
we were to frame the semantics in terms of instruction swaps, as opposed to read-
delays, these optimizations could have been supported without also introducing non-
termination. In Chapter 3, we discuss the notion of commutativity of trace events,

122

and touch on the notion of equivalence of traces. Here, we are not talking about
commuting trace events but commuting instructions in the program text. Instructions
a and b that commute in the program text may not commute in a trace. For example,
even if a and b are adjacent in the program text, the events associated with the
execution of a and b may not be adjacent in a trace. The events associated with a
and b may not be made to commute in a trace because (1) the execution of other
threads may split apart the events generated by a and b, and (2) we may not be able
to bring the events associated with a and b back together (i.e., we may not be able to
put the events adjacent to each other) while still maintaining trace equivalence. Had
we, however, defined commutation as transformation on the program text, we could
have taken a program P and derived an equivalent program P′ such that the behavior
of P′ under a delayed write semantics, [[P′]]DW , matches the behavior of P under a
delayed read/write semantics, [[P]]DRW .

[[P]]DRW ≈ [[P′]]DW

What is significant about this observation is the following: the delayed write se-
mantics side-steps cyclic dependencies and out-of-thin-air behavior. Therefore, we
ask whether (A) the delayed write semantics following a static program transforma-
tion can be made as relaxed as (B) the delayed read/write semantics, while keeping
degenerate situations at bay. Such an approach emphasizes the distinction between
static versus runtime transformations.

5.3 Delaying reads in a setting with conditionals

With the basic observability rule ironed out, we can then add other language con-
structs to the delayed read/write semantics of Section 5.2. Here we highlight chal-
lenges related to incorporating branching. We proceed with an example due to Batty
et al. [9] involving load buffering and conditional execution.

In the code snippet in Listing 5.4, two threads start with a load followed by an
if-statement whose condition depends on the value of the load. With the semantics

T 1 T 2
r1 := x r2 := y
if r1 == 42 if r2 == 42

y := r1 x := 42
else

x := 42

Listing. 5.4: LB+ctrldata+ctrl-double [9].

we have designed so far, the if-statement would require the load to be “concretized”

123

T 1 T 2
r1 := x r2 := y
if r1 == 42 x := 42

y := r1

Listing. 5.5: LB+ctrldata+po [9].

so the condition could be evaluated. The example would then be reduced to two sets
of interleavings.

1. One set of interleavings in which the load of x in the first thread occurs early—
meaning, before the second thread assigns 42 to x in either arm of its if-statement.
In this case, there exist no writes to x that can service the load other then x’s
initialization to zero. The load of x would then dereference the zero value via
R-DEREF, and 0 would be substituted into the first thread’s term via R-SUBST.
The condition in the first thread’s if-statement would evaluate to false, and execu-
tion would terminate with (r1,r2) = (0,0).

2. The other set of interleavings encompass the cases in which the load of x occurs
after the assignment of 42 to x. Since the load of x occurs after the assignment,
there exist two values that the load can observe: 0 or 42. When 42 services the
load, then execution terminates with (r1,r2) = (42,0).

The delayed read/write semantics can thus produce (0,0) or (42,0) and it cannot
produce (42,42). Note that (0,0) and (42,0) are also possible in a sequentially con-
sistent semantics, and that (42,42) is also precluded under sequential consistency.

However, since in the second thread the if- and else-branches assign 42 to x,
we can pull the assignment out and eliminate the branch. Such a simple compiler
optimization leads to the program of Listing 5.5. With the control dependency elim-
inated, we are now allowed to execute the assignment of x := 42 before the load of
y. In other words, the two remaining instructions of the second thread can now be
swapped. This swap leads to a new possible end-result: (r1,r2) = (42,42).

T 1 T 2
r: = x r2 := y
if r1 == 42 if r2 == 42

y := r1 x := 42

Listing. 5.6: LB+ctrldata+ctrl-single [9].

We would like for the memory model to account for this compiler optimization.
The memory model should to admit (42,42) as a result to not only the modified

124

program of Listing 5.5 but also to the original program of Listing 5.4. In what fol-
lows, we explore how the operational semantics can be further relaxed when dealing
with conditionals. This relaxation will cause the semantics to admit (42,42) as an
end-result.

T 1 T 2

(n1:Rx = 42)

(n2:Wy = 42)

(n3:Ry = 42)

(n4:Wx = 42)

ppo

rf

po

rf

Figure 5.5: Candidate execution for load buffering with control dependency.

5.3.1 Branching on symbolic conditions

By incorporating branching on conditionals that contain symbolic values, we are
able to admit (r1,r2) = (42,42) as a possible end-result of Listing 5.4. Such a
semantics is based on symbolic execution, where threads accumulate a path variable
Ψ. When exploring the then-branch, a thread’s path variable is “anded” with the
symbolic branch condition, see R-SCONDt . When exploring the else-branch, the
variable is “anded” with the negation of the condition, see R-SCOND f .

p⟨σ ,if sb then t1 else t2,ψ⟩ −→ p⟨σ , t1,ψ ∧ sb⟩ R-SCONDt

p⟨σ ,if sb then t1 else t2,ψ⟩ −→ p⟨σ , t2,ψ ∧¬sb⟩ R-SCOND f

Going back to Listing 5.4, the symbolic branching allows x to be assigned 42
in the second thread before the load of y is concretized. With the load delayed
and the write executed, the first thread can then set y to 42. At this point, the sec-
ond thread’s load can finally commit and observe the value of 42, thus leading to
(r1,r2) = (42,42).

In equations (5.8), (5.9), and (5.10) we show how the then-branch leads to the
desired end-result. Without loss of generality, we start reducing the second thread:8

8Note that with σ1, σ2, σ ′1, etc, we are keeping track of the evolution of thread states. We do not,
however, explicitly state the contents of the different thread states—although this content is taken into
account in the reductions and in the accompanying the discussion.

125

p1⟨σ1,let r1 =load x in if r1 == 42 then y := r1,⊤⟩ ∥
p2⟨σ2,let r2 = load y in if r2 == 42 then x := 42 else x := 42,⊤⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|)
p2(y?_)n2−−−−−→

p1⟨σ1,let r1 =load x in if r1 == 42 then y := r1,⊤⟩ ∥
p2⟨σ ′2,let r2 = n2 in if r2 == 42 then x := 42 else x := 42,⊤⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] let−→

p1⟨σ1,let r1 =load x in if r1 == 42 then y := r1,⊤⟩ ∥
p2⟨σ ′2,if n2 == 42 then x := 42 else x := 42,⊤⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)]
(5.8)

Exploring the then-branch. We can then explore the first branch:

p1⟨σ1,let r1 =load x in if r1 == 42 then y := r1,⊤⟩ ∥
p2⟨σ ′2,if n2 == 42 then x := 42 else x := 42,⊤⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] scondt−−−→

p1⟨σ1,let r1 =load x in if r1 == 42 then y := r1,⊤⟩ ∥
p2⟨σ ′2,x := 42,⊤∧n2 = 42⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)]
p2(x!42)n3−−−−−−→

p1⟨σ1,let r1 =load x in if r1 == 42 then y := r1,⊤⟩ ∥
p2⟨σ ′′2 , ,⊤∧n2 = 42⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|)
(5.9)

At this point, we want to reduce the first thread. The load from x can observe the
original zero value of the variable and, because of the delayed write to x associated
with n3, the read can also observe 42. In either case load-buffering does not play
a role: since there will be no alterations of x in the program, we can load a value
right away—as opposed to post-pone the effects of the load. We will explore the
two possible values for this load. First, in equation (5.10), we load, dereference,
and substitute—in one combined step—the value of 42 when reading x. Later, in

126

equation (5.11), we do the same combined reduction step when observing 0.

p1⟨σ1,let r1 = load x in if r1 == 42 then y := r1,⊤⟩ ∥
σ ′′2 ⟨,⊤∧n2 = 42,∥⟩

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|)
p1(x?_)n4−−−−−→ derefr−−−→ subst−−→

p1⟨σ ′1,let r1 = 42 in if r1 == 42 then y := r1,⊤⟩ ∥
σ ′′2 ⟨,⊤∧n2 = 42,∥⟩

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|) ∥
n4[(σ1,x,42)] let−→

p1⟨σ ′1,if 42 == 42 then y := 42,⊤⟩ ∥ σ ′′2 ⟨,⊤∧n2 = 42,∥⟩
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|) ∥
n4[(σ1,x,42)]

i f−→

p1⟨σ ′1,y := 42,⊤⟩ ∥ p2⟨σ ′′2 , ,⊤∧n2 = 42⟩ ∥
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|) ∥

n4[(σ1,x,42)]
p1(y!42)n5−−−−−−→

p1⟨σ ′′1 , ,⊤⟩ ∥ p2⟨σ ′′2 , ,⊤∧n2 = 42⟩ ∥
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|) ∥
n4[(σ1,x,42)] ∥ n5(|σ ′1,y := 42|) deref−−→

p1⟨σ ′′1 , ,⊤⟩ ∥ p2⟨σ ′′2 , ,⊤∧n2 = 42⟩ ∥
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,y,42)] ∥ n3(|σ ′2,x := 42|) ∥
n4[(σ1,x,42)] ∥ n5(|σ ′1,y := 42|)

(5.10)

By branching on symbolic condition, we had created the obligation that the value
of 42 is read into x by n2. In second to last configuration of equation (5.10), the
write event n5 services n2 with the needed value of 42. The execution is, therefore,
satisfiable: meaning that the path variables associated with each thread evaluate to
true. Note that this run of the program matches by the candidate execution graph of
Figure 5.5.

Going back to the end-state of equation (5.9), we explore what happens if the

127

load of x in the first thread is serviced by n0:

p1⟨σ1,let r1 = load x in if r1 == 42 then y := r1,⊤⟩ ∥
p1⟨σ ′′2 , ,⊤∧n2 = 42⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|)
p1(x?_)n4−−−−−→ derefr−−−→ subst−−→

p1⟨σ ′1,let r1 = 0 in if r1 == 42 then y := r1,⊤⟩ ∥
p2⟨σ ′′2 , ,⊤∧n2 = 42⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|) ∥
n4[(σ1,x,42)] let−→

p1⟨σ ′1, ,⊤⟩ ∥ p2⟨σ ′′2 , ,⊤∧n2 = 42⟩ ∥
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|) ∥
n4[(σ1,x,42)]

(5.11)

In the end configuration of equation (5.11), we again have the obligation that the
value of 42 is read into x by n2—this obligation comes from having branched based
on a symbolic condition. However, at the end of execution (i.e., in the end state of
equation (5.11)), there does not exist a write that can service n2 with the value of 42
for x. This execution, therefore, is not satisfiable and is discarded by the semantics.

Exploring the else-branch. Exploring the else-branch does not lead to an execu-
tion in which (r1,r2) = (42,42). Although the then-branch and the else-branch are
symmetric (meaning that both paths contain a write of 42 to x), when it comes to
exploring the else-branch, the semantics adds ¬(n2 = 42) to the path variable asso-
ciated with the thread, as opposed to n2 = 42. This modified path variable precludes
(r1,r2) = (42,42).

Let us explore the else-branch of the if-statement starting from the end-state of
equation (5.8). For brevity, we combine the branch and the subsequent store.

p2⟨σ1,let r1 =load x in if r1 == 42 then y := r1,⊤⟩ ∥
p2⟨σ ′2,if n2 == 42 then x := 42 else x := 42,⊤⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)]
scond f−−−−→

p2(x!42)n3−−−−−−→

p1⟨σ1,let r1 =load x in if r1 == 42 then y := r1,⊤⟩ ∥
p2⟨σ ′′2 , ,⊤∧¬(n2 = 42)⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|)
(5.12)

Again, there is no point in delaying the load of x in the first thread (as there exist no
future writes to x that can impact the load). And again, there exist two possibilities:
we can read the initial zero value of x or read the value of 42 associated with n3. If

128

zero is loaded, then execution ends in the configuration depicted in equation (5.13).
Note that the obligation of y in n2 being different than 42 is satisfied by the initial
value of y. Still, this end-state is fairly uninteresting, since we already knew that
(r1,r2) = (0,0) is a possible outcome of the model (the outcome is possible even
under sequential consistency).

p1⟨σ ′1, ,⊤⟩ ∥ p2⟨σ ′′2 , ,⊤∧¬(n2 = 42)⟩ ∥
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,y,0)] ∥ n3(|σ ′2,x := 42|) ∥ n4[(σ1,x,0)]

(5.13)

If, on the other hand, 42 is loaded instead of zero, then:

p1⟨σ1,let r1 =load x in if r1 == 42 then y := r1,⊤⟩ ∥
p2⟨σ ′′2 , ,⊤∧¬(n2 = 42)⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|)
p1(x?_)n4−−−−−→ derefr−−−→ subst−−→

p1⟨σ ′1,let r1 = 42 in if r1 == 42 then y := r1,⊤⟩ ∥
p2⟨σ ′′2 , ,⊤∧¬(n2 = 42)⟩ ∥

n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|) ∥
n4[(σ1,x,42)] let−→ i f−→

p1⟨σ ′1,y := 42,⊤⟩ ∥ p2⟨σ ′′2 , ,⊤∧¬(n2 = 42)⟩ ∥
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|) ∥

n4[(σ1,x,42)]
p1(y!42)n5−−−−−−→

p1⟨σ ′′1 , ,⊤⟩ ∥ p2⟨σ ′′2 , ,⊤∧¬(n2 = 42)⟩ ∥
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,?y)] ∥ n3(|σ ′2,x := 42|) ∥
n4[(σ1,x,42)] ∥ n5(|σ ′1,y := 42|) deref−−→

p1⟨σ ′′1 , ,⊤⟩ ∥ p2⟨σ ′′2 , ,⊤∧¬(n2 = 42)⟩ ∥
n0(|σ⊥,x := 0|) ∥ n1(|σ⊥,y := 0|) ∥ n2[(σ2,y,0)] ∥ n3(|σ ′2,x := 42|) ∥
n4[(σ1,x,42)] ∥ n5(|σ ′1,y := 42|)

(5.14)

The observability rules captured by R-DEREF allow for n2 to be serviced by the
zero value of y in n1 as well as by the value of 42 in n5. However, the branching on
the symbolic conditional adds the constraint that n2 must not observe the value of
42. Thus, the execution terminates with n2 being serviced by n1. In other words, we
have (r1,r2) = (0,42). This scenario, like the one in equation (5.14), is also present
in a sequentially consistent execution.

The reductions above show that Listing 5.4 has an execution that matches the de-
sired relaxations when executing in a delayed read/write semantics augmented with

129

path variables and symbolic if-statements. Particularly, the run leading to equa-
tion (5.10) behaves as if the if-statement did not exist: the run allows the load of y
to take effect after the setting of x to 42 in the second thread. In other words, the
delayed read/write semantics can produce a run for Listing 5.4 as if it where a run
for Listing 5.5, where the second thread’s if-statement has been compiled out of the
program.

There is, however, a problem with the type of relaxation introduced
by R-SCONDt and R-SCOND f . The relaxation allows for the result (42,42)
also for the code in Listing 5.6. However, when it comes to Listing 5.6, (42,42) is
considered to be out-of-thin-air! The justification for (42,42) involves the circular
reasoning as follows: By assuming that the second thread observes 42 when loading
y, the condition r2 == 42 is satisfied and x is written the value of 42. This leads to
the first thread writing 42 to y, which justifies the initial assumption.

Delayed reads, path variables, and branching on symbolic conditions allow the
semantics to be more relaxed, but to the point of admitting out-of-thin-air behav-
ior. There exists an analogue problem in axiomatic semantics: when it comes to
Listing 5.6, we want to forbid the candidate-execution of Figure 5.5 because it in-
volved circular reasoning. Yet, the same candidate execution captures desired runs
of Listing 5.4.

In order to fix the issue, a semantics should only be allowed to pull a statement
out of an if-statement if the statement is executed in all branches of the if. How-
ever, when the semantics was augmented to support branching with conditionals,
we allowed the write from inside the then-branch to be “swapped” with the load that
preceded the branch. This swapping took place for both Listings 5.4 and 5.6. In
other words, the semantics allowed for the swap without considering the existence
of an else-branch.

One approach may be to explore all arms of a branch. For example, in the case
of Listings 5.4, we would obtain two memory events for the two writes to x. These
events would live in the same configuration. The event on the left captures the write
to x in the then-branch and the one on the right corresponds to the else-branch. We
also augment the memory events with the path variable of the executing thread.
This augmentation is captured by condition n2 = 42 on the left and ¬(n2 = 42) on
the right:

n3(|σ ′2,x := 42,n2 = 42|) ∥ n′3(|σ ′2,x := 42,¬(n2 = 42)|)

Such symbolic write events would not be able to service read events. We could,
however, include reduction rules to manipulate these symbolic events. The seman-
tics can be made to perform resolution on the conditions associated with memory
events. For example, we can perform resolution on the path variables associated
with the two memory events n3 and n′3 above to obtain m(|σ ′2,x := 42|). This de-
rived event represents the fact that the write of 42 to x in the second thread can
be taken out of the branch, as in Listing 5.4. Such a semantics would thus admit

130

(r1,r2) = (42,42) as a result of Listing 5.4.

n(|σ ,x := v,a1∨a2...∨ c|) m(|σ ,x := v,b1∨b2...∨ c|)

m(|σ ,x := v,a1∨a2...b1∨b2...|)

n(|σ ,x := v, |)

n(|σ ,x := v|)

Given that the else-branch is missing, the semantics would also preclude the re-
sult (42,42) for Listing 5.6. For one, without a corresponding event with which to
perform resolution, there would be no path to converting the “conditional” mem-
ory event n3 into a concrete memory event. And, for as long as the event remains
“conditional,” its value could not be used in a computation.

5.4 Channels and other considerations

With the introduction of delayed reads, we must consider whether it is reasonable to
send a symbolic value on a channel. For example, in the code

r := x

c← r

the local variable r can now be m where m is the label of a read event m[(σ ,?x)].
This read event is representing the fact that the concrete value of x has not yet been
determined. Like branching on a symbolic value, sending a symbolic value over a
channel opens the door to new behavior that is not present in a delayed-write se-
mantics. Since the state σ in the read event contains happens-before and shadowing
information, sending a handle (as opposed to a concrete value) seems like a plausi-
ble design choice. When it comes to Listing 5.7, the transmission of a read handle
is also a necessity.

T 1 T 2
r1 := x r2 := y

c← r2
y := r1 x := 42

Listing. 5.7: Load buffering and send on an “initial” buffered channel

Let c in Listing 5.7 be a channel of capacity greater than one. The send into c by
thread T 2 is non-blocking. Since there are no other interactions with the channel,
T 2 learns the empty state σ⊥ when sending.9 Given that for all σ we have that

9See the channel communication rules of Section 2.5.3.2 and the R-SEND rule in particular.

131

σ +σ⊥ = σ , the send by thread T 2 does not change the thread’s state. Although
the send deposits a message into the channel, the message remains unredeemed for
the life of the program. For these reasons, the channel operation behaves like a no-
op. By removing c and the send operation, it would be reasonable for a compiler
to optimize Listing 5.7 into Listing 5.2. Therefore, we would like the two listings
to produce the same set of results. However, in order for Listing 5.7 to produce the
same results as Listing 5.2, the value of r2 sent on c cannot be concrete; it has to be
symbolic.10

In fact, we need be able to send symbolic values even if the send cannot be com-
piled out of the code. For example, if we were to remove T 2’s send from Listing 5.8,
T 3 would become non-terminating. However, the synchronization between T 2 and
T 3 does not alter the fact that T 1 and T 2 are not synchronized. Therefore, we still
want to have (r1,r2) = (42,42) as a possible out-come.

T 1 T 2 T 3
r1 := x r2 := y

c← r2 ← c
y := r1 x := 42

Listing. 5.8: Load buffering and send on an “initial” buffered channel, three threads

5.5 Conclusion

In this chapter we have provided sketches for a semantics with delayed reads and
well as delayed writes. The reduction rules in Section 5.2 lay out the ground work.
Rule R-DEREF faithfully follows the Go memory model observability rules, which
specify when a read is allowed to observe a write.

In Section 5.3, we show that there exist relaxations involving delayed reads and
branches that are not accounted for in the reduction rules of Section 5.2. We ex-
plore ways to further relax the operational semantics by branching on symbolic
reads—this addition gives the semantics the flavor of speculative execution. The
relaxation afforded by symbolic branching, however, goes too far: the augmented
semantics admits out-of-thin-air behavior. We draw parallels between operational
and axiomatic semantics and conclude Section 5.3 with ideas on how to potentially
deal with branches. Section 5.4 introduces channels and argues for the need to send
symbolic values (i.e., read event labels) over channels.

10By sending a symbolic value, we are able to obtain a reduction like in Example 4 and the end-result
of (r1,r2) = (42,42).

132

We point at open questions throughout the chapter. Here, we remind the reader
of the importance of establishing the DRF-SC guarantee for the delayed read/write
semantics. This may involve the proof in Chapter 2 as a stepping stone.

Finally, it is worth noticing that the operational semantics discussed at the end
of Section 5.3 starts to have the same flavor as its axiomatic counterparts. The op-
erational semantics is, in essence, collecting concrete and symbolic memory events.
These events carry information that allow us to relate them to one another; for ex-
ample, they are related through their happens-before and shadow sets and through
path variables. Like events of an axiomatic semantics, the memory events of the op-
erational semantics can thus be interpreted as vertices that can be connected to one
another. It would be interesting to further explore the parallels between operational
and axiomatic semantics, and to seek a correspondence between the two approaches.

6Conclusion and extensions

Each society and each individual usually explore
only a tiny fraction of the horizon of possibilities.

Yuval Noah Harari, Sapiens

In the introduction, we set three goals for this thesis. The first was to propose
and evaluate a memory model for message passing systems using an operational
semantics as formalism. In Chapter 2, we presented a memory model inspired by
the Go programming language, where threads synchronize by exchanging messages
over channels. In that chapter, we also addressed the goal of investigating how
relaxed the model can be while keeping out-of-thin-air behavior at bay and while
supporting the DRF-SC guarantee—which says that Data-Race Free executions are
Sequentially Consistent. This second goal was addressed by showing the absence
of out-of-thin-air (OOTA) behavior and by proving the DRF-SC guarantee for a
memory model supporting delayed writes.

The formalisms introduced in Chapter 2 can, however, be generalized by in-
corporating delayed reads (aka. load buffering). The further relaxation associated
with delayed reads, however, presents significant challenges with respect to non-
termination and the introduction of OOTA behavior. These challenges require fur-
ther investigation, as discussed in Chapter 5.

In Chapter 3, we explored data-race detection and showed, in Chapter 4, how
our formalisms helped unveil and remedy a bug in the Go runtime. These chapters
support our third goal of relating the theoretical model to its “material” counterpart
and source of inspiration: the Go programming language.

Here, we discuss additional extensions of our work, such as the potential for
improvements in data-race detection, the verification of Go programs via model
checking, and the exploration of language constructs at the intersection of concur-
rency and distribution.

6.1 Data-race detection

Even though Go is a language with channels, the infrastructure underlying the
Go data-race detector is based on lock semantics! Locks have been the prevalent
mode of synchronization partially because they can easily be mapped down to
hardware, but employing locks are not always the best approach. As part of this
thesis, we introduced a primitive (the release-acquire-exchange of Chapter 4) that
closely matches the semantics of channels into the underlying data-race detector
used in Go. By doing so, we not only repaired the detector’s functionality but also

133

134

improved its performance and memory consumption—see Section 4.5. We would
like to see further improvements.

One a practical side, the underlying race detector employed by Go is written in
C/C++ and reside in a different repository than the language itself. This complicates
the process of upgrading the detector and keeping it in sync with the language. Al-
though powerful, the detector is overly complex: it was originally built for detecting
races in C++11, which means that large portions of the code base do not apply to Go.
This added complexity creates a high barrier of entrance when it comes to modifying
and improving the detector.

Go is a language for systems design and is thus suited for implementing a data-
race detector. An implementation in Go, for Go, is not just an exercise of the “eat
your own dog food” principle [103]. More importantly, a tailor-made implementa-
tion would be simpler and thus easier to modify and extend than the existing detec-
tor’s code base. This simplicity would likely translate to improvements and to new
features for the end user. We are particularly interested in exploiting the concept of
stale vector-clock entries, defined in Chapter 3, Section 3.5.1. We conjecture that
the memory consumption associated with a vector-clock based data-race detector
can be reduced by taking the concept of stale entries into account.

6.2 Model checking and predictive data-race detection

Dynamic data-race detectors can flag synchronization issues in individual runs of
a program. Predictive data-race detection attempts to extrapolate from an individ-
ual run in order to flag races in alternate executions. When checking Go programs
for data races, we could explore alternate executions by reordering “channel races,”
meaning, when more than one thread competes on sending or receiving from a chan-
nel. According to the Go memory model, messages that sit next to each other in a
channel’s buffer are not related by happens-before. Therefore, it is possible to derive
alternate runs of a program by swapping the order of messages in a channel.

Finding alternate execution paths can also be helpful from the point of view of
model checking. Therefore, message swapping is an interesting avenue to explore.
However, message reordering requires careful analysis. As an example, let |c | > 1
and |c2 |= 0 in the snippet below:

T 1 T 2
sd c
sd c2 rv c2

sd c

The messages sent by T 1 and T 2 may sit side-by-side in c’s buffer. According to
the happens-before rules of the Go memory model, these messages are unrelated.
We would be tempted to want to swap them, thinking that there is an execution of

135

the program where T 2 sends before T 1. However, because of the message exchange
over c2, such execution does not exist: the send and the receive on c2 by T 1 and T 2
causes T 1’s actions to be in the past of T 2’s.

6.3 Bridging the gap between concurrency and distribution

In the 1990s, we learned from experience that simply making remote-procedure-
calls available to the application programmer is not sufficient when it comes to de-
veloping robust distributed systems [101]. Although similar in many ways, there
exist challenges particular to distribution that do not manifest themselves in a purely
concurrent setting. In a concurrent system, we assume that cooperating agents fall
within a single overarching environment. In Go, for example, these agents (go-
routines) are under the umbrella of the Go runtime. The runtime, with the help of
the operating system, allows us to assume that no messages are lost during transmis-
sion. When it comes to distributed systems, however, there exists no such point of
authority—at least not without making strong assumptions about the network con-
nection. Given that a network delay may be indistinguishable from a node failure,
we are forced to deal with reliability issues in a distributed system.

Despite being useful in the context of cloud computing, Go channels are not
meant for the development of distributed systems but rather as a synchronization
mechanism in shared memory systems. An active area of research involves
programming paradigms that can address the particular needs of distributed
systems. Conflict-free replicated data types (CRDTs) [82] and lattice-based data
structures [22, 55] have emerged as promising approaches. What would it take to
turn Go into a language for expressing distributed computations? How can we best
evolve message passing systems in light of recent advances in data structures and
type systems for distributed programming.

AAppendix

A.1 The weak semantics simulates the strong

Proof of Lemma 2 (simulation). To prove the≳-relationship between the respective
initial configurations, we need to establish a simulation relation, say R, between
(well-formed) strong and weak configurations such that S0 and P0 are in that rela-
tion. To ease the definition of the relation R connecting the strong and the weak
semantics, we introduce a few abbreviations.

Configurations for the weak semantics contain additional book-keeping infor-
mation, such as identifiers for write events and the thread local views on the global
configuration. Given a configuration in the weak semantics, a corresponding strong
configuration is one where all the extra information is removed. More formally:
The erasure of a goroutine p⟨σ , t⟩, written ⌊p⟨σ , t⟩⌋ is defined as ⟨t⟩. The erasure
of forward channel c f [q], written ⌊c f [q]⌋, replaces each element (v,σ) of the queue
by v. For a backward channel cb[q], the σ -elements are replaced by unit values.
The special end-of-transmission value ⊥ remains unchanged. We use erasure corre-
spondingly also on whole configurations.

Given a strong well-formed configuration S, we allow ourselves to interpret it as
a mapping from shared variables to their values, writing σS(z) = v if S contains a
write event of the form (|z:=v|). This interpretation is independent of the configura-
tions’ syntactical representation, meaning S1 ≡ S2 implies σS1 = σS2 . Furthermore,
according to this interpretation, σS is a well-defined function when S is well-formed
(which means there exists one write event per shared variable). For weak configu-
rations P, there is no uniqueness of write events for a given shared variable. Anal-
ogously, we could define a “multi-valued” state σP(z) = {v1, . . . ,v2} collecting all
values written to z in any write event. We need, however, a mild refinement of
that notion for the definition of simulation: We must record the status of the shared
variables from the perspective of an individual thread. In the weak semantics, go-
routines maintain in σ information about which write events are observable for that
goroutine, namely all those which are not “shadowed.” So, given a well-formed
configuration P and a set N of names, we define σN

P as follows:

σN
P (z) = {v | m(|z:=v|) ∈ P and m /∈ N} . (A.1)

We then define the relation R between well-formed strong and weak configuration
over the same set of shared variables as follows: S R P if ⌊P⌋ = S (as far as go-
routines and channels is concerned) and furthermore, for each goroutine p⟨(_,Es), t⟩
in P, and all shared variables z,

σS(z) ∈ σEs
P (z) . (A.2)

137

138

Case: R-WRITEs: p⟨z := v; t⟩ ∥ (|z:=v′|) τ−→s p⟨t⟩ ∥ (|z:=v|)
By definition, S R P implies that P contains a goroutine p⟨σ ,z := v; t⟩. Doing the
corresponding weak step P τ−→w P′ yields

P′ = νm (p⟨σ ′, t⟩ ∥ m(|z:=v|))

where σ ′ = (E ′hb,E
′
s). Since m is a fresh name, it is not mentioned in any shadow

set of any thread, in particular m /∈ E ′s. Consequently, S′ and P′ satisfy the condition
from equation (A.2) for variable z. The condition holds for the remaining shared
variables as well: it was assumed to hold for S and P prior to the steps, and write-
steps do not affect variables other than z. Consequently, S′ R P′ as required.

Case: R-READs: p⟨let r = load z in t⟩ ∥ (|z:=v|) (z?v)−−→s p⟨let r = v in t⟩ ∥ (|z:=v|)
S R P implies that P contains p⟨(_,Es),z := v; t⟩ and write events m(|z:=v|) (there
may be more than one for z and v, but with different identifiers); specifically
condition (A.2) guarantees that there exists one m(|z:=v|) such that m /∈ Es, which

enables R-READw for P such that P
(z?v)−−→w P′ with S′ R P′, as required.

The remaining cases are analogous or simpler, establishing thatR is a simulation
relation. It is immediate that the corresponding initial configurations are related, i.e.,
S0 R P0. Thus P0 ≳ S0, which concludes the proof.

A.2 Proofs via a weak semantics augmented with read and
write events

This section contains supplementary material and proofs for the lemmas of Sec-
tion 2.6. In particular, the material here allows us to carry out the harder direction
of the simulation proof of Section 2.6.2, namely that the strong semantics simulates
the weak one for race-free programs.

We start in Section A.2.1 augmenting the weak semantics with additional infor-
mation which has no relevance aside from assisting the proofs. Section A.2.2 covers
properties of the augmented semantics.

A.2.1 Augmenting the weak semantics

This section presents an “alternative” representation of the weak semantics of Sec-
tion 2.5. The steps of the reformulation here are in one-to-one correspondence to
the previous ones, with the difference that now, more information is stored as part
of the configurations. In particular, the weak semantics from Section 2.5 makes use
of write events as part of configurations. Read steps, however, were not treated the
same way. The variant semantics augments the weak one by: 1) recording read
events in addition to write events, and 2) storing in the read and write events the
local state σ of the issuing thread at the point in time the read/write step was taken.

139

The configurations introduced in equation (2.6) on page 27 are therefore adapted to
contain events of the following form:

m(|σ ,z := v|)p and m[(σ ,?z)]p , (A.3)

where m(|σ ,z := v|)p are write events augmented with the local state σ and identity
p of the issuing thread and m[(σ ,?z)]p are read events augmented analogously.

Notation 14 (Events). We use e for events and r and w for read and write events
specifically. For two different events, we generally assume that their identities are
different. It is an invariant of the semantics that the labeling of the events are indeed
unique. Furthermore, let e be an event with identifier m and referring to variable
z. Instead of writing m ∈ Es for some shadowed set Es, we allow ourselves to write
e ∈ Es. Similarly, we write more succinctly e ∈ Ehb instead of (m,z) ∈ Ehb.

From the rules of Figure 2.11, only the read and write steps require adaptation.
See Figure A.1 for the augmented rules, which behave exactly as the originals except
that the steps now record additional information as part of the configuration.

σ = (Ehb,Es) σ ′ = (Ehb +(m, !z),Es +Ehb(z)) fresh(m)
R-WRITEσ

p⟨σ ,z := v; t⟩ −→ νm (p⟨σ ′, t⟩ ∥ m(|σ ,z := v|)p)

σ = (_,Es) m /∈ Es fresh(m′)
R-READσ

p⟨σ ,let r = load z in t⟩ ∥ m(|_,z := v|)_ −→
νm′ (p⟨σ ,let r = v in t⟩ ∥ m(|_,z := v|)_ ∥ m′[(σ ,?z)]p)

Figure A.1: Operational semantics: Read/write rules with augmented read/write
events

The augmentation of the rules yield an operational semantics that is obviously
equivalent to the one from Section 2.5: It is easy to envision the simulation relation
as a function from the augmented semantics to the weak semantics (the function
simply removes the augmented information). This augmented semantics, however,
allows us to prove the lemmas of Section 2.6.

A.2.2 Additional concepts and lemmas

In the following, we use−→w,−→∗w, etc., when referring to the steps of the augmented
weak semantics, which we will, from now on, refer to simply as the “weak seman-
tics” (unless stated otherwise).

140

We define three binary relations between events given the augmented read and
write events. First, the happens-before relation, which can now be gathered from
the augmented event information. Events are considered concurrent if unordered by
the happens-before relation. Combinations of read-write resp. write-write events are
in conflict if they are concurrent and concern the same variable. These definitions
generalize Definition 7 from the main part of the paper.

Definition 13 (Binary relations on events). Let e1 and e2 be two different events,
with E2

hb the happens-before set of e2 and m1 the identity of e1.

1. e1 happens-before e2, written e1→hb e2, if m1 ∈ E2
hb.

2. e1 and e2 are concurrent, written e1 9 e2, if neither e1→hb e2 nor e2→hb e1.

3. e1 and e2 are in conflict, written e1#e2, iff e1 9 e2, both event concern the same
variable, and one of the events is a write.

We denote read/write conflicts as #rw and write/write as #ww. We also say that
a configuration contains a conflict if it contains two different events which are in
conflict. Note that we need the augmented notion of configurations to obtain this
definition; the original notion of weak configuration contains not enough informa-
tion to “detect” conflicts (not to mention, that read events were not even recorded).
Note that the definition of →hb is slightly asymmetric: only the happens-before
information from e2 is relevant when defining e1→hb e2 (as e1 does not have infor-
mation about events that “happen-after”). See also Lemma 15, stating that→hb is a
partial order.

Lemma 15 (Simple properties of event relations).

• # and 9 are symmetric, irreflexive by definition, but not transitive.

• #ww is not transitive.

Furthermore, all reachable configurations we have the following invariants:

• →hb is a strict partial order (i.e., acyclic, transitive, and irreflexive).

• Assume two events e1 and e3 with p1 the issuing process of e1 and p2 the one of
e2. Then e1 9 e2 implies p1 ̸= p2.

Proof. # and 9 are symmetric by definition. The invariants are proven by straight-
forward induction on the steps of the operational semantics.

Finally, we define the notion of write events being observable by read-events.
This again is a generalization of the corresponding notion of write events begin ob-
servable by processes from Definition 7. A write event is observable by a read event
unless it is either “shadowed,” i.e., it is mentioned in the shadow set of the read

141

event, or the write event “happens-after” the read event, i.e., the write-event men-
tions the read-event in its happens-before set. The two conditions for observability
correspond directly to the formulation in the informal description of the happens-
before memory model [40].

Definition 14 (Observable writes by a read event). Assume two events on the same
variable z: one being a read event r with shadow set Er

s and the other a write event
with happens-before set Ew

hb. The write event w on z is observable by the read event
r on z, written w→z

o r, if

1. w /∈ Er
s and

2. r /∈ Ew
hb.

We also write w→o r if the variable which “connects” the events needs no men-
tion. With this, we can define

W o
P (z@r) = {w ∈ P | w→z

o r}

as the set of write-events observable by the read event r in a given (augmented)
configuration P. This is analogous to the set of write events W o

P (z@p) observable
by process p (see Definition 7). Note, however, that the transition-based definition
from Section 2.6.2 does not include condition (2) from Definition 14. Even if the
two definitions differ concerning that condition, they are intuitively capturing the
same concept: In the earlier Definition 7, the observability referred to a read-event
r just about to occur, namely being executed by a process. Thus, there was no need
to mention write events for which r→hb w would hold, as they could not be part
of the configuration at that point. Definition 14 of observability by read events in
the augmented semantics takes into account “historic” read events and therefore,
condition (2) is needed as old read events cannot observe writes that are guaranteed
to have occurred in the future (according to the happens-before relation). Write-
events that just coincidentally were issued in a later reduction step but otherwise
unordered via the happens-before relation may well be observable by such a read
event.

We now make the informal definition of race from the discussion in page 38
precise. There we said a race is a situation in which two different threads access
the same shared variable, at least one of the accesses is a write, and the accesses are
not ordered by the happens-before relation. In light of the augmentation done to the
weak semantics, this definition can easily be made precise.

Definition 15 (Data race). Let P be a reachable configuration in the augmented se-
mantics. P has a r/w-race iff P−→∗w P′ with P′ containing a r/w-conflict. Analogously
for w/w-races resp. w/w-conflicts.

142

A.2.2.1 General invariant properties

See also Section 2.6.2.1 in the main part.

Lemma 16 (Invariants). For all reachable configurations, we have the following
invariants.

1. For all events e resp. processes with local state (Ehb,Es), Es ⊂ Ehb(z).

2. w9 r implies w→o r.

3. For each read event r, there exists a write event w with w→o r and not w9 r.

4. For each read event r, there exists a write event w with w→o r and w→hb r.

Proof. Part 3 or alternatively part 4 is used in the proof of Lemma 19. By straight-
forward induction.

Proof of the invariants Lemma 3. A straightforward consequence of the corre-
sponding property for read and write events of the augmented semantics from
Lemma 16.

Proof of Lemma 4 (“consensus possible”). The property holds for an initial config-
uration P0 because:

• it contains one write event for each shared variable and

• the initial process’s shadowed set is empty.

Therefore, every process observe, for each variable, the same initial value. Assum-
ing W o

Pi
(z@p) ̸= /0 where P0 −→∗w Pi then, for each possible step that Pi can take we

argue as follows:

Case: Congruence, local steps, R-READ, R-MAKE, R-CLOSE, and R-GO
None of the rules modify WP. In addition, congruence, local steps, R-READ,
R-MAKE and R-CLOSE do not alter thread-local states, which means that
shadowed sets are unchanged. R-GO creates a new goroutine that inherits the
thread-local state of the parent.

Case: R-WRITE
R-WRITE adds a fresh write event, which, by definition, is not in the shadowed set
of any process and, therefore, is in

∩
p∈Pi+1

W o
Pi+1

(z@p).

143

Case: R-SEND
Let Es be the sender’s shadowed set at Pi. According to the definition of R-SEND,
the sender’s shadowed set at Pi+1 is Es∪E ′′s where E ′′s is the shadowed set of some
thread in a configuration Pj where j < i. By the induction hypothesis, there exists a
write event m that is not in any process’s shadowed set at Pi. Since shadowed sets
are monotonically increasing, m /∈ E ′′s . Since m /∈ Es and m /∈ E ′′s , then m /∈ Es∪E ′′s .
This means m is not in the sender’s shadowed set at Pi+1, which, coupled with the
fact that no other threads’ shadowed set are modified by the R-SEND rule, we have
that

∩
p∈Pi+1

W o
Pi+1

(z@p).

Case: R-REC, R-REC⊥
Analogous to R-SEND.

Case: R-REND
Let Es and E ′s be the sender’s and receiver’s shadowed sets at Pi. By the induction
hypothesis, there exists a write event m that is not in any process’s shadowed set
at Pi; therefore, m /∈ Es and m /∈ E ′s in specific. By the definition of R-REND, the
sender’s and receiver’s shadowed sets at Pi+1 is Es ∪E ′s. Since m /∈ Es and m /∈ E ′s,
then m /∈ Es ∪E ′s. Finally, since at Pi+1 the sender’s and receiver’s shadowed sets
do not contain m, and since no other threads’ shadowed set were modified in the
transition Pi −→ Pi+1, we have that

∩
p∈Pi+1

W o
Pi+1

(z@p).

The next lemma expresses a property concerning observability and conflicts.
Each read event may well observe more than one write-event; this corresponds to the
situation where a read step yields a non-deterministic result. The lemma establishes
that this ambiguity in observability is a symptom of conflicts. As the notion of
conflicting events in the augmented weak semantics is in close correspondence with
the notion of races (as established in Definition 15), the lemma implies that for race-
free programs, there is no ambiguity when observing write events.

Lemma 17 (Observability and conflicts). The weak semantics has the following
invariant: If w1→x

o r←x
o w2 for two different write events w1 and w2, then w1#xw2

or w1#xr or w2#xr.

Proof. By straightforward induction on the steps of the (augmented) weak seman-
tics.

Note that the fact that two write events w1 and w2 are observable by a read event
does not imply that w1#w2. It may well be the case that w1 →hb w2 and both are
concurrent wrt. the read event. If, in particular w1 →hb w2, w1 →hb r, and w2 9 r,
then w2#r but w1 is not in conflict with any of the other two events.

144

A.2.2.2 Race-free resp. conflict-free reductions

See also Section 2.6.2.2 in the main part of the paper.

Lemma 18 (Uniqueness of observability). Let P be a reachable, conflict-free con-
figuration in the augmented semantics. If P is race-free and P −→∗w P′, then for all
events in P′ and all variables z we have

|{w | r←z
o w}| ≤ 1 (A.4)

Proof. Assume for a contradiction that there exists in P′ two different write events
w1 and w2 for some variable and some read event such that w1→o r and w2→o r.
By Lemma 17, this implies that P′ contains at least two conflicting events. With
Definition 15, the existence of conflicting events contradicts the assumption of race-
freedom, which concludes the proof.

Corollary 19. Let P, P′ and z be given as in Lemma 18. Then we have

|{w | r←z
o w}|= 1 . (A.5)

Proof. A direct consequence of 18 and of Lemma 16(3) (or alternatively of
Lemma 16(4)).

Proof of Lemma 5 (no concurrent write when it counts). A direct consequence of
the equivalence of races and conflicts from Definition 15. Assume for a contradic-

tion P
(z?)p−−→w P′ and W 9

P (z@p) ̸= /0. Then P′ contains two events r and w with r#w.
With Definition 15, this contradicts the assumption that P0 has no r/w race. The
case for w/w races is analogous.

Lemma 20 (Unique observability when it counts). Assume P0 −→∗w P with P0 race-

free. If P
(z?)p−−→w or P

(z!)p−−→w, then

W o
P (z@p) = {m} . (A.6)

Proof. For the write step: assume that there are two different observable writes
w1 and w2. By Lemma A.2.2.2, W 9

P (z@p) = /0. By Definition 7, that means all
observable writes are in happens-before relation, i.e., W o

P (z@p) = W hb
P (z@p). In

particular, both w1 and w2 are in happens-before relation to process p at that point.
For the case w1→hb w2, w1 is unobservable by p, contradicting the assumption (the
case w2 →hb w1 is symmetric). Remains the case where w1 and w2 are unordered
by →hb, in other words, w1 ∥ w2, which implies w1#w2. With Definition 15, that
contradicts the assumption of race-freedom. The case for a read-step is analogous
(alternatively it follows from Lemma 18).

As an easy consequence, we obtain the following consensus lemma:

145

Proof of Lemma 6 (“race-free consensus when it counts”). A direct consequence
of unique observability from Lemma 20 and the possible consensus property from
Lemma 4.

Proof of Corollary 7. A direct consequence of the consensus Lemma 6.

The next property is central for the guarantees of the weak semantics. It states
that, under the assumption of race freedom, at each point in time each variable has
exactly one “real” value. In other words, for each variable, there is exactly one write
commonly observable across all processes. If one would focus on one particular
process (or a proper subset as opposed to all processes as the lemma does), then the
set of observable writes may be larger than one. If a process or a set of processes are
in a situation where there is more than one observable write, it simply means that
those process will not do any observations until this nondeterminism is resolved.
Doing a read-step in this situation would contradict the assumption of race-freedom
(see Lemma 6).

Note that the configurations in the weak semantics do not contain any explicit
information which marks a particular write event as “the” value (also not in the
augmented weak semantics). Having a consensus value is not a feature of the se-
mantics per se; instead, it hinges on the assumption that the program being executed
is race-free.

Indeed, the existence of exactly one unique consensus value is the core of the
DRF-SC guarantee (i.e., in the absence of data races, the weak semantics behaves
like the strong, sequentially consistent one). More technically, when establishing
the connection between the strong and the weak semantics, relating the weak and
the strong configurations obviously will make the “consensus” value of the weak
semantics the one used in the strong one. Without the race-free consensus lemma,
the construction would not be well-defined: the erasure ⌊_⌋ from Definition 9 would
not be a function, resp. would not yield well-formed strong configurations.

Proof of Lemma 8 (race-free consensus). By straightforward induction on the steps
of the operational semantics. The property clearly holds for any initial configu-

ration. The crucial case is when writing to a variable. So, assume P
(z!)p−−→w P′. By

Lemma 5(1), there are no concurrent writes for p before the step, i.e., W 9
P (z@p)= /0.

By Definition 7, that means all observable writes are in happens-before relation, i.e.,

W o
P (z@p) = W hb

P (z@p).1 Consequently, after the
(z!)p−−→w step of the weak seman-

tics, all those observable write events are shadowed for p in P′, thereby becoming
unobservable by p. As a result, the only write-event observable by p is the one just

executed by step P
(z!)p−−→w P′. This is a new write event in P with a fresh identity, say,

1One could establish that there is exactly one such event, but it is not needed for the proof. The
important property here is that there are no concurrent observable writes.

146

m′, which consequently is not mentioned in the shadow set of any process. There-
fore,

∩
pi∈P′W

o
P (z@pi) = {m′}, establishing the invariant for the post-configuration

P′.

Bibliography

[1] Adve, S. V. and Gharachorloo, K. (1995). Shared memory consistency models: A tutorial. Research
Report 95/7, Digital WRL.

[2] Adve, S. V. and Hill, M. D. (1990). Weak ordering — a new definition. SIGARCH Computer
Architecture News, 18(3a):2–14.

[3] Alglave, J., Maranget, L., and Tautschnig, M. (2014). Herding cats: Modelling, simulation, testing,
and data-mining for weak memory. ACM Transactions on Programming Languages and Systems,
36(2).

[4] Alrahman, Y. A., Andric, M., Beggiato, A., and Lluch-Lafuente, A. (2014). Can we efficiently check
concurrent programs under relaxed memory models in Maude? In Escobar, S., editor, Rewriting
Logic and Its Applications – 10th International Workshop, WRLA 2014, Held as a Satellite Event of
ETAPS, Grenoble, France, April 5-6, 2014, Revised Selected Papers, volume 8663 of Lecture Notes
in Computer Science, pages 21–41. Springer Verlag.

[5] Andrews, G. R. (2000). Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison-Wesley.

[6] Aspinall, D. and Ševčík, J. (2007). Java memory model examples: Good, bad and ugly. Proc. of
VAMP, 7.

[7] Back, R. and von Wright, J. (1998). Refinement Calculus – A Systematic Introduction. Graduate
Texts in Computer Science. Springer.

[8] Banerjee, U., Bliss, B., Ma, Z., and Petersen, P. (2006). A theory of data race detection. In Proceed-
ings of the 4th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging, held
in conjunction with the ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2006), PADTAD 2006, Portland, Maine, USA, July 17, 2006, pages 69–78.

[9] Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., and Sewell, P. (2015). The problem
of programming language concurrency semantics. In Vitek, J., editor, Programming Languages and
Systems: 24th European Symposium on Programming, ESOP 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,
Proceedings, volume 9032 of Lecture Notes in Computer Science, pages 283–307. Springer Verlag.

[10] Batty, M., Owens, S., Sarkar, S., and Weber, T. (2011). Mathematizing C++ concurrency. In
Proceedings of POPL ’11, pages 55–66. ACM.

[11] Becker (2011). Programming languages — C++. ISO/IEC 14882:2001.
[12] Benveniste, A., Caspi, P., Edwards, S. A., Halbwachs, N., Guernic, P. L., and de Simone, R. (2003).

The synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64–83.
[13] Blackshear, S., Gorogiannis, N., O’Hearn, P. W., and Sergey, I. (2018). RacerD: compositional

static race detection. PACMPL, 2(OOPSLA):144:1–144:28.
[14] Blanchette, J. C., Weber, T., Batty, M., Owens, S., and Sarkar, S. (2011). Nitpicking C++ concur-

rency. In Schneider-Kamp, P. and Hanus, M., editors, Proceedings of the 13th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming, July 20-22, 2011,
Odense, Denmark, pages 113–124. ACM.

[15] Boehm, H.-J. and Adve, S. V. (2008). Foundations of the C++ concurrency memory model. In
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages
68–78. ACM.

[16] Boehm, H.-J. and Demsky, B. (2014). Outlawing ghosts: Avoiding out-of-thin-air results. In
Proceedings of the Workshop on Memory Systems Performance and Correctness, MSPC ’14, pages
7:1–7:6, New York, NY, USA. ACM.

[17] Boudol, G. and Petri, G. (2009). Relaxed memory models: An operational approach. In Proceed-
ings of POPL ’09, pages 392–403. ACM.

147

148

[18] Brewer, E. A. (2015). Kubernetes and the path to cloud native. In Ghandeharizadeh, S., Barahmand,
S., Balazinska, M., and Freedman, M. J., editors, Proceedings of the Sixth ACM Symposium on Cloud
Computing, SoCC 2015, Kohala Coast, Hawaii, USA, August 27-29, 2015, page 167. ACM.

[19] Channel types, Go language specification (2016). Channel types, the Go programming language
specification. https://golang.org/ref/spec#Channel_types.

[20] Choi, J., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., and Sridharan, M. (2002). Efficient and
precise datarace detection for multithreaded object-oriented programs. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI) Berlin, Germany, pages 258–269.
ACM.

[21] Collier, W. W. (1992). Reasoning about Parallel Architectures. Prentice Hall, international edition.
[22] Conway, N., Marczak, W. R., Alvaro, P., Hellerstein, J. M., and Maier, D. (2012). Logic and lattices

for distributed programming. In Proceedings of the Third ACM Symposium on Cloud Computing,
page 1. ACM.

[23] Cook, B. (2018). Formal reasoning about the security of amazon web services. In Chockler, H.
and Weissenbacher, G., editors, Computer Aided Verification - 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018,
Proceedings, Part I, volume 10981 of Lecture Notes in Computer Science, pages 38–47. Springer.

[24] Cypher, R. and Leu, E. (1995). Efficient race detection for message-passing programs with non-
blocking sends and receives. In Proceedings. Seventh IEEE Symposium on Parallel and Distributed
Processing, pages 534–541. IEEE.

[25] Damodaran-Kamal, S. K. and Francioni, J. M. (1993). Nondeterminancy: testing and debugging in
message passing parallel programs. ACM SIGPLAN Notices, 28(12):118–128.

[26] Demange, D., Laporte, V., Zhao, L., Jagannathan, S., Pichardie, D., and Vitek, J. (2013). Plan B: A
buffered memory model for Java. In Proceedings of POPL ’13, pages 329–342. ACM.

[27] Dijkstra, E. W. (n.d.). Over de sequentialiteit van procesbeschrijvingen. Circulated privately.
[28] Donovan, A. A. A. and Kernighan, B. W. (2015). The Go Programming Language. Addison-

Wesley.
[29] Fava, D. (2017). Operational semantics of a weak memory model with channel synchronization.

https://github.com/dfava/mmgo.
[30] Fava, D. (2020a). Finding and fixing a mismatch between the Go memory model and data-race

detector. In 18th International Conference on Software Engineering and Formal Methods (SEFM).
[31] Fava, D. (2020b). Grace: a race detector based on happens-before sets. https://github.com/

dfava/grace.
[32] Fava, D., Steffen, M., and Stolz, V. (2018a). Anything goes unless forbidden. Notes on synchro-

nization and the operational semantics of a relaxed memory model. In 35th Annual Meeting of the GI
Working Group “Programming Languages and Computing Concepts, pages 96–110.

[33] Fava, D., Steffen, M., and Stolz, V. (2018b). Operational semantics of a weak memory model
with channel synchronization. In Havelund, K., Peleska, J., Roscoe, B., and de Vink, E., editors,
International Symposium on Formal Methods, volume 10951 of Lecture Notes in Computer Science,
pages 1–19. Springer International Publishing.

[34] Fava, D., Steffen, M., and Stolz, V. (2019). Operational semantics of a weak memory model with
channel synchronization. Journal of Logical and Algebraic Methods in Programming, 103:1 – 30. An
extended version of the FM’18 publication with the same title.

[35] Fava, D. S. and Steffen, M. (2020). Ready, set, Go! Data-race detection and the Go language.
Science of Computer Programming, 195:102473.

[36] Flanagan, C. and Freund, S. N. (2009). FastTrack: Efficient and precise dynamic race detection. In
Hind, M. and Diwan, A., editors, ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 121–133. ACM.

[37] Flanagan, C. and Freund, S. N. (2010). Adversarial memory for detecting destructive races. In
Zorn, B. and Aiken, A., editors, ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 244–254. ACM.

https://golang.org/ref/spec#Channel_types
https://github.com/dfava/mmgo
https://github.com/dfava/grace
https://github.com/dfava/grace

149

[38] Go developer survey (2019). Go developer survey 2019 results. https://blog.golang.org/
survey2019-results.

[39] Go language specification (2016). The Go programming language specification. https://golang.
org/ref/spec.

[40] Go memory model (2014). The Go memory model. https://golang.org/ref/mem. Version of
May 31, 2014, covering Go version 1.9.1.

[41] Go share memory by communicating (2010). The Go blog. https://blog.go-lang.org/
codelab-share.

[42] golang.race.detector (2013). https://blog.golang.org/race-detector.
[43] google.sanitizer (2014). https://github.com/google/sanitizers.
[44] google.thread.sanitizer (2015). https://github.com/google/sanitizers/wiki/

ThreadSanitizerAlgorithm.
[45] Guerraoui, R., Henzinger, T. A., and Singh, V. (2009). Software transactional memory on relaxed

memory models. In Bouajjani, A. and Maler, O., editors, Proceedings of CAV ’09, volume 5643 of
Lecture Notes in Computer Science, pages 321–336. Springer Verlag.

[46] Hoare, C. A. R. (1978). Communicating sequential processes. Communications of the ACM,
21(8):666–677.

[47] Huang, J., Meredith, P. O., and Rosu, G. (2014). Maximal sound predictive race detection with
control flow abstraction. In ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 337–348. ACM.

[48] Inc, S. I. and Weaver, D. L. (1994). The SPARC architecture manual. Prentice-Hall.
[49] Jagadeesan, R., Pitcher, C., and Riely, J. (2010). Generative operational semantics for relaxed

memory models. In Gordon, A. D., editor, Programming Languages and Systems, volume 6012 of
Lecture Notes in Computer Science, pages 307–326. Springer Verlag.

[50] Jones, G. and Goldsmith, M. (1988). Programming in occam2. Prentice-Hall International, Hemel
Hampstead.

[51] K framework (2017). The K framework. available at http://www.kframework.org/.
[52] Kang, J., Hur, C., Lahav, O., Vafeiadis, V., and Dreyer, D. (2017). A promising semantics for

relaxed-memory concurrency. In Castagna, G. and Gordon, A. D., editors, Proceedings of POPL ’17,
pages 175–189. ACM.

[53] Katz, S. and Peled, D. (1992). Defining conditional independence using collapses. Theoretical
Computer Science, 101.

[54] Kumar, R., Myreen, M. O., Norrish, M., and Owens, S. (2014). Cakeml: a verified implementation
of ML. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 179–192.

[55] Kuper, L. and Newton, R. R. (2013). Lvars: lattice-based data structures for deterministic paral-
lelism. In Grelck, C., Henglein, F., Acar, U. A., and Berthold, J., editors, Proceedings of the 2nd ACM
SIGPLAN workshop on Functional high-performance computing, Boston, MA, USA, FHPC@ICFP
2013, September 25-27, 2013, pages 71–84. ACM.

[56] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM, 21(7):558–565.

[57] Lamport, L. (1979). How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, C-28(9):690–691.

[58] Lange, J., Ng, N., Toninho, B., and Yoshida, N. (2017). Fencing off Go: Liveness and safety for
channel-based programming. In Castagna, G. and Gordon, A. D., editors, Proceedings of POPL ’17,
pages 748–761. ACM.

[59] Lattner, C. and Adve, V. (2004). LLVM: A compilation framework for lifelong program analysis
& transformation. In International Symposium on Code Generation and Optimization, 2004. CGO
2004., pages 75–86. IEEE.

https://blog.golang.org/survey2019-results
https://blog.golang.org/survey2019-results
https://golang.org/ref/spec
https://golang.org/ref/spec
https://golang.org/ref/mem
https://blog.go-lang.org/codelab-share
https://blog.go-lang.org/codelab-share
https://blog.golang.org/race-detector
https://github.com/google/sanitizers
https://github.com/google/sanitizers/wiki/ThreadSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/ThreadSanitizerAlgorithm
http://www.kframework.org/

150

[60] Lidbury, C. and Donaldson, A. F. (2017). Dynamic race detection for C++11. In Castagna, G.
and Gordon, A. D., editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 443–457. ACM.

[61] llvm.thread.sanitizer (2011). https://clang.llvm.org/docs/ThreadSanitizer.html.
[62] Lochbihler, A. (2013). Making the Java memory model safe. ACM Transactions on Programming

Languages and Systems, 35(4):12:1–12:65.
[63] Maarand, H. (2020). Operational Semantics of Weak Sequential Composition. PhD thesis, Tallinn

University of Technology.
[64] Manson, J., Pugh, W., and Adve, S. V. (2005). The Java memory model. In Proceedings of POPL

’05, pages 378–391. ACM.
[65] Maranget, L., Sarkar, S., and Sewell, P. (2012). A tutorial introduction to the ARM and POWER

relaxed memory models (version 120).
[66] Marino, D., Musuvathi, M., and Narayanasamy, S. (2009). Literace: effective sampling for light-

weight data-race detection. In ACM Sigplan notices, pages 134–143.
[67] Mattern, F. (1988). Virtual time and global states in distributed systems. In Proceedings of the

International Conference on Parallel and Distributed Algorithms, pages 215–226.
[68] Mazurkiewicz, A. (1987). Trace theory. In Brauer, W., Reisig, W., and Rozenberg, G., editors, Petri

Nets: Applications and Relationships to Other Models of Concurrency, (Advances in Petri Nets 1986)
Part II, volume 255 of Lecture Notes in Computer Science, pages 279–324. Springer Verlag.

[69] Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deploy-
ment. Linux Journal, 2014(239):2.

[70] Milner, R. (1971). An algebraic definition of simulation between programs. In Proceedings of the
Second International Joint Conference on Artificial Intelligence, pages 481–489. William Kaufmann.

[71] Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mobile processes, part I/II. Information
and Computation, 100:1–77.

[72] Naik, M., Aiken, A., and Whaley, J. (2006). Effective static race detection for Java. In Proceed-
ings of the 27th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 308–319. ACM.

[73] Nestmann, U. and Steffen, M. (1997). Typing confluence. In Second International ERCIM Work-
shop on Formal Methods in Industrial Critical Systems, pages 77–101.

[74] Netzer, R. H. B. and Miller, B. P. (1990). On the complexity of event ordering for shared-memory
parallel program executions. In Proceedings of the 1990 International Conference on Parallel Pro-
cessing, Urbana-Champaign, IL, USA, August 1990. Volume 2: Software., pages 93–97.

[75] Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., and Deardeuff, M. (2015). How
Amazon web services uses formal methods. Commun. ACM, 58(4):66–73.

[76] O’Callahan, R. and Choi, J.-D. (2003). Hybrid dynamic data race detection. In Proceedings of the
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP 2003, June
11-13, 2003, San Diego, CA, USA, pages 167–178.

[77] Palamidessi, C. (1997). Comparing the expressive power of the synchronous and the asynchronous
π-calculus. In Proceedings of POPL ’97, pages 256–265. ACM.

[78] Peters, K. and Nestmann, U. (2012). Is it a “good” encoding of mixed choice? In Proceedings of the
International Conference on Foundations of Software Science and Computation Structures (FoSSaCS
’12), volume 7213 of Lecture Notes in Computer Science, pages 210–224. Springer Verlag.

[79] Pichon-Pharabod, J. and Sewell, P. (2016). A concurrency-semantics for relaxed atomics that per-
mits optimisation and avoids thin-air executions. In Proceedings of POPL ’16, pages 622–633. ACM.

[80] Pozniansky, E. and Schuster, A. (2003). Efficient on-the-fly data race detection in multi-threaded
C++ programs. In Proceedings of the 9th ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP’03).

[81] Pratikakis, P., Foster, J. S., and Hicks, M. W. (2006). LOCKSMITH: Context-sensitive correlation
analysis for race detection. In Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 320–331. ACM.

https://clang.llvm.org/docs/ThreadSanitizer.html

151

[82] Preguica, N., Marques, J. M., Shapiro, M., and Letia, M. (2009). A commutative replicated data
type for cooperative editing. In Distributed Computing Systems, 2009. ICDCS’09. 29th IEEE Inter-
national Conference on, pages 395–403. IEEE.

[83] Pugh, W. (1999). Fixing the Java memory model. In Proceedings of the ACM Java Grande Con-
ference, pages 89–98.

[84] Pugh, W. (2000). The Java memory model is fatally flawed. Concurrency: Practice and Experience,
12(6):445–455.

[85] Rau, B. R. and Fisher, J. A. (1993). Instruction-level parallel processing: history, overview, and
perspective. In Instruction-Level Parallelism, pages 9–50. Springer.

[86] Rhodes, D., Flanagan, C., and Freund, S. N. (2017). Bigfoot: Static check placement for dynamic
race detection. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 141–156.

[87] Roşu, G. and Şerbănuţă, T. F. (2010). An overview of the K semantic framework. Journal of Logic
and Algebraic Methods in Programming, 79(6):397–434.

[88] Rupp, K., Horovitz, M., Labonte, F., Shacham, O., Olukotun, K., Hammond, L., and Batten, C.
(42). Years of microprocessor trend data. by karlrupp. net.[Online.

[89] Sabry, A. and Felleisen, M. (1992). Reasoning about programs in continuation-passing style. In
Clinger, W., editor, Conference on Lisp and Functional Programming (San Francisco, California),
pages 288–298. ACM.

[90] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T. (1997). Eraser: A dynamic
data race detector for multithreaded programs. ACM Transactions on Computer Systems, 15(4):391–
411.

[91] Serebryany, K. and Iskhodzhanov, T. (2009). Threadsanitizer: data race detection in practice. In
Proceedings of the Workshop on Binary Instrumentation and Applications, pages 62–71. ACM.

[92] Serebryany, K., Potapenko, A., Iskhodzhanov, T., and Vyukov, D. (2011). Dynamic race detection
with llvm compiler. In International Conference on Runtime Verification, pages 110–114. Springer.

[93] Smaragdakis, Y., Evans, J., Sadowski, C., Yi, J., and Flanagan, C. (2012). Sound predictive race
detection in polynomial time. In Proceedings of POPL ’12, pages 387–400. ACM.

[94] Steffen, M. (2016). A small-step semantics of a concurrent calculus with goroutines and deferred
functions. In Ábrahám, E., Bonsangue, M., and Johnsen, E. B., editors, Theory and Practice of Formal
Methods. Essays Dedicated to Frank de Boer on the Occasion of his 60th Birthday (Festschrift),
volume 9660 of Lecture Notes in Computer Science, pages 393–406. Springer Verlag.

[95] Sutter, H. (2005). The free lunch is over: A fundamental turn toward concurrency in software. Dr.
Dobbs journal, 30(3):202–210.

[96] Tendler, J. M., Dodson, J. S., Jr., J. S. F., Le, H. Q., and Sinharoy, B. (2002). Power4 system
microarchitecture. IBM Journal of Research and Development, 46(1):5–25.

[97] Terauchi, T. and Aiken, A. (2008). A capability calculus for concurrency and determinism. ACM
Transactions on Programming Languages and Systems (TOPLAS), 30(5):27.

[98] Tomasulo, R. M. (1967). An efficient algorithm for exploiting multiple arithmetic units. IBM
Journal of research and Development, 11(1):25–33.

[99] Valle, S. (2016). Shared variables in Go. A semantic analysis of the Go memory model. Master’s
thesis, Faculty of Mathematics and Natural Sciences, University of Oslo.

[100] Voung, J. W., Jhala, R., and Lerner, S. (2007). RELAY: Static race detection on millios of lines of
code. In Proceedings oof the 6th Joint Meeting of the European Software Engineering Conference and
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages 205–214.

[101] Waldo, J., Wyant, G., Wollrath, A., and Kendall, S. (1997). A note on distributed computing.
Springer.

[102] Wikipedia contributors (2020). Larrabee (microarchitecture) — Wikipedia, the free encyclopedia.
[Online; accessed 10-November-2020].

[103] Wikipedia contributors (2021). Eating your own dog food — Wikipedia, the free encyclopedia.
[Online; accessed 18-January-2021].

152

[104] Zhang, Y. and Feng, X. (2016). An operational happens-before memory model. Frontiers in
Computer Science, 10(1):54–81.

	Abstract
	Preface
	Publications
	Acknowledgments

	Introduction
	A bird's eye view of the history of parallelism
	Memory models
	The goals of this thesis
	Thesis outline

	Operational Semantics of a Weak Memory Model with Channel Synchronization
	Introduction
	Background
	Abstract syntax
	Strong operational semantics
	Weak operational semantics
	Relating the strong and the weak semantics
	Implementation
	Discussion
	Limitations and future work
	Related work
	Conclusion

	Data-race detection and the Go language
	Introduction
	Background
	Data-race detection
	Efficient data-race detection
	Comparison with vector-clock based race detection
	Connections with trace theory
	Related work
	Conclusion

	Finding and fixing a mismatch between the Go memory model and data-race detector
	Introduction
	Synchronization via channel communication
	The Go memory model: Every word counts
	The Go data-race detector
	The fix: capturing the semantics of channels
	Lessons learned
	Conclusion

	Incorporating load buffering into the memory model
	Introduction
	Delaying reads in a setting without conditionals
	Delaying reads in a setting with conditionals
	Channels and other considerations
	Conclusion

	Conclusion and extensions
	Data-race detection
	Model checking and predictive data-race detection
	Bridging the gap between concurrency and distribution

	Appendix
	The weak semantics simulates the strong
	Proofs via a weak semantics augmented with read and write events

	Bibliography

