
Go is a programming language prominent in
Cloud Computing.

https://kubernetes.io
https://www.docker.com


Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I

Synchronization is done via channel communication



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I

Synchronization is done via channel communication

var a string
func setA() { a = "hello" }

func main() {
setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I

Synchronization is done via channel communication

var a string
func setA() { a = "hello" }

func main() {
setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I

Synchronization is done via channel communication

var a string
func setA() { a = "hello" }

func main() {
go setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I

Synchronization is done via channel communication

var a string
func setA() { a = "hello" }

func main() {
go setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I

Synchronization is done via channel communication

var a string
func setA() { a = "hello" }

func main() {
go setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I Synchronization is done via channel communication

var a string
func setA() { a = "hello" }

func main() {
go setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I Synchronization is done via channel communication

var a string
func setA() { a = "hello" }

func main() {
go setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I Synchronization is done via channel communication

var done = make(chan bool, 10)
var a string
func setA() { a = "hello" }

func main() {
go setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I Synchronization is done via channel communication

var done = make(chan bool, 10)
var a string
func setA() { a = "hello" }

func main() {
go setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I Synchronization is done via channel communication

var done = make(chan bool, 10)
var a string
func setA() { a = "hello" }

func main() {
go setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I Synchronization is done via channel communication

var done = make(chan bool, 10)
var a string
func setA() { a = "hello"; done <- true }

func main() {
go setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I Synchronization is done via channel communication

var done = make(chan bool, 10)
var a string
func setA() { a = "hello"; done <- true }

func main() {
go setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I Synchronization is done via channel communication

var done = make(chan bool, 10)
var a string
func setA() { a = "hello"; done <- true }

func main() {
go setA()
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I Synchronization is done via channel communication

var done = make(chan bool, 10)
var a string
func setA() { a = "hello"; done <- true }

func main() {
go setA()

print(a)
}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I Synchronization is done via channel communication

var done = make(chan bool, 10)
var a string
func setA() { a = "hello"; done <- true }

func main() {
go setA()
<- done
print(a)

}



Go is built for concurrency.
I Spawning a new thread (goroutine) is as easy as calling a function

I Synchronization is done via channel communication

var done = make(chan bool, 10)
var a string
func setA() { a = "hello"; done <- true }

func main() {
go setA()
<- done
print(a)

}



Since it is easy to make concurrency mistakes,
Go has a built-in data-race detector.

go run -race my_program.go



Since it is easy to make concurrency mistakes,
Go has a built-in data-race detector.

go run -race my_program.go



Repairing the Go data-race detector.
A story on applied research.

Daniel S. Fava

danielsf@ifi.uio.no

Department of informatics
University of Oslo, Norway

danielsf@ifi.uio.no




Our story has a theoretical basis in two
active areas of research.

1. Memory model

2. Data-race detection

What happens when a detector is at odds with the memory model



Our story has a theoretical basis in two
active areas of research.

1. Memory model

2. Data-race detection

What happens when a detector is at odds with the memory model



Our story has a theoretical basis in two
active areas of research.

1. Memory model

2. Data-race detection

What happens when a detector is at odds with the memory model



Our story has a theoretical basis in two
active areas of research.

1. Memory model

2. Data-race detection

What happens when a detector is at odds with the memory model



Our story also has real practical implications.

I Mismatch lead to the under-reporting of data-races
I No warning about missing some synchronization

I A bug on a tool to find bugs (compound effect)

I Bug evaded Go maintainers for six years



Our story also has real practical implications.

I Mismatch lead to the under-reporting of data-races
I No warning about missing some synchronization

I A bug on a tool to find bugs (compound effect)

I Bug evaded Go maintainers for six years



T0 T1 T2

c ← 0

z := 42

← c c ← 0

← c

load z

po

po

po

rule 1
rule 2

rule 1





We implemented a fix accepted by the Go community.
Here we share three main lessons learned.

1. Mind the Gap

2. Models don’t have to be right, they have to be useful

3. Bad news is good news



We implemented a fix accepted by the Go community.
Here we share three main lessons learned.

1. Mind the Gap

2. Models don’t have to be right, they have to be useful

3. Bad news is good news



We implemented a fix accepted by the Go community.
Here we share three main lessons learned.

1. Mind the Gap

2. Models don’t have to be right, they have to be useful

3. Bad news is good news



We implemented a fix accepted by the Go community.
Here we share three main lessons learned.

1. Mind the Gap

2. Models don’t have to be right, they have to be useful

3. Bad news is good news





1. Mind the Gap.

Go memory model
I succinct document
I written in English
I technical vocabulary

Go data-race detector
I thousands of lines of code
I different projects & repos
I different languages

(Go, C/C++, assembly)

Formal model
Small-step operational semantics
[Fava et al., 2018a, Fava and Steffen, 2020]

I succinct
I executable
I formal:

use logic to
state and prove properties



1. Mind the Gap.

Go memory model

I succinct document
I written in English
I technical vocabulary

Go data-race detector
I thousands of lines of code
I different projects & repos
I different languages

(Go, C/C++, assembly)

Formal model
Small-step operational semantics
[Fava et al., 2018a, Fava and Steffen, 2020]

I succinct
I executable
I formal:

use logic to
state and prove properties



1. Mind the Gap.

Go memory model

I succinct document
I written in English
I technical vocabulary

Go data-race detector

I thousands of lines of code
I different projects & repos
I different languages

(Go, C/C++, assembly)

Formal model
Small-step operational semantics
[Fava et al., 2018a, Fava and Steffen, 2020]

I succinct
I executable
I formal:

use logic to
state and prove properties



1. Mind the Gap.

Go memory model
I succinct document
I written in English
I technical vocabulary

Go data-race detector

I thousands of lines of code
I different projects & repos
I different languages

(Go, C/C++, assembly)

Formal model
Small-step operational semantics
[Fava et al., 2018a, Fava and Steffen, 2020]

I succinct
I executable
I formal:

use logic to
state and prove properties



1. Mind the Gap.

Go memory model
I succinct document
I written in English
I technical vocabulary

Go data-race detector
I thousands of lines of code
I different projects & repos
I different languages

(Go, C/C++, assembly)

Formal model
Small-step operational semantics
[Fava et al., 2018a, Fava and Steffen, 2020]

I succinct
I executable
I formal:

use logic to
state and prove properties



1. Mind the Gap.

Go memory model
I succinct document
I written in English
I technical vocabulary

Go data-race detector
I thousands of lines of code
I different projects & repos
I different languages

(Go, C/C++, assembly)

Formal model
Small-step operational semantics
[Fava et al., 2018a, Fava and Steffen, 2020]

I succinct
I executable
I formal:

use logic to
state and prove properties



1. Mind the Gap.

Go memory model
I succinct document
I written in English
I technical vocabulary

Go data-race detector
I thousands of lines of code
I different projects & repos
I different languages

(Go, C/C++, assembly)

Formal model
Small-step operational semantics
[Fava et al., 2018a, Fava and Steffen, 2020]

I succinct

I executable
I formal:

use logic to
state and prove properties



1. Mind the Gap.

Go memory model
I succinct document
I written in English
I technical vocabulary

Go data-race detector
I thousands of lines of code
I different projects & repos
I different languages

(Go, C/C++, assembly)

Formal model
Small-step operational semantics
[Fava et al., 2018a, Fava and Steffen, 2020]

I succinct
I executable

I formal:

use logic to
state and prove properties



1. Mind the Gap.

Go memory model
I succinct document
I written in English
I technical vocabulary

Go data-race detector
I thousands of lines of code
I different projects & repos
I different languages

(Go, C/C++, assembly)

Formal model
Small-step operational semantics
[Fava et al., 2018a, Fava and Steffen, 2020]

I succinct
I executable
I formal:

use logic to
state and prove properties



1. Mind the Gap.

Go memory model
I succinct document
I written in English
I technical vocabulary

Go data-race detector
I thousands of lines of code
I different projects & repos
I different languages

(Go, C/C++, assembly)

Formal model
Small-step operational semantics
[Fava et al., 2018a, Fava and Steffen, 2020]

I succinct
I executable
I formal: use logic to

state and prove properties



2. Models don’t have to be right, they have to be useful.

without interfaces
or packages
or pointers
or arrays, maps...Goroutines

Concurrency

Channels
Synchronization

Shared
memory



2. Models don’t have to be right, they have to be useful.

without interfaces
or packages
or pointers
or arrays, maps...

Goroutines
Concurrency

Channels
Synchronization

Shared
memory



2. Models don’t have to be right, they have to be useful.

without interfaces

or packages
or pointers
or arrays, maps...

Goroutines
Concurrency

Channels
Synchronization

Shared
memory



2. Models don’t have to be right, they have to be useful.

without interfaces
or packages

or pointers
or arrays, maps...

Goroutines
Concurrency

Channels
Synchronization

Shared
memory



2. Models don’t have to be right, they have to be useful.

without interfaces
or packages
or pointers

or arrays, maps...

Goroutines
Concurrency

Channels
Synchronization

Shared
memory



2. Models don’t have to be right, they have to be useful.

without interfaces
or packages
or pointers
or arrays, maps...

Goroutines
Concurrency

Channels
Synchronization

Shared
memory



2. Models don’t have to be right, they have to be useful.

without interfaces
or packages
or pointers
or arrays, maps...

Goroutines

Concurrency

Channels
Synchronization

Shared
memory



2. Models don’t have to be right, they have to be useful.

without interfaces
or packages
or pointers
or arrays, maps...

Goroutines
Concurrency

Channels
Synchronization

Shared
memory



2. Models don’t have to be right, they have to be useful.

without interfaces
or packages
or pointers
or arrays, maps...

Goroutines
Concurrency

Channels

Synchronization
Shared
memory



2. Models don’t have to be right, they have to be useful.

without interfaces
or packages
or pointers
or arrays, maps...

Goroutines
Concurrency

Channels
Synchronization

Shared
memory



2. Models don’t have to be right, they have to be useful.

without interfaces
or packages
or pointers
or arrays, maps...

Goroutines
Concurrency

Channels
Synchronization

Shared
memory



2. Models don’t have to be right, they have to be useful.

without interfaces
or packages
or pointers
or arrays, maps...

Goroutines
Concurrency

Channels
Synchronization

Shared
memory



2. Models don’t have to be right, they have to be useful.

Our operational-semantics was an approximation
of the Go memory model

The model was sufficiently accurate to be useful



2. Models don’t have to be right, they have to be useful.

Our operational-semantics was an approximation
of the Go memory model

The model was sufficiently accurate to be useful



2. Models don’t have to be right, they have to be useful.

Our operational-semantics was an approximation
of the Go memory model

The model was sufficiently accurate to be useful



3. Bad news is good news.

High effort in formalizing and proving properties of SW.

Industry is busy delivering.

Academia can develop valuable artifacts not common in industry.

There is room for collaboration.



3. Bad news is good news.

High effort in formalizing and proving properties of SW.

Industry is busy delivering.

Academia can develop valuable artifacts not common in industry.

There is room for collaboration.



3. Bad news is good news.

High effort in formalizing and proving properties of SW.

Industry is busy delivering.

Academia can develop valuable artifacts not common in industry.

There is room for collaboration.



3. Bad news is good news.

High effort in formalizing and proving properties of SW.

Industry is busy delivering.

Academia can develop valuable artifacts not common in industry.

There is room for collaboration.





Three main open questions remain..



1. By taking channels seriously,
can we improve data-race detection?

I Most data-race detectors are based on locks (including Go’s)
acquire and release

I Synchronization via channels is different from locks
send is not a combination of acquires and releases

I Partial answer to the above question is Yes
The proposed fix is faster,

and consumes less memory

“Channels at the head of the queue!”



1. By taking channels seriously,
can we improve data-race detection?

I Most data-race detectors are based on locks (including Go’s)
acquire and release

I Synchronization via channels is different from locks
send is not a combination of acquires and releases

I Partial answer to the above question is Yes
The proposed fix is faster,

and consumes less memory

“Channels at the head of the queue!”



1. By taking channels seriously,
can we improve data-race detection?

I Most data-race detectors are based on locks (including Go’s)
acquire and release

I Synchronization via channels is different from locks
send is not a combination of acquires and releases

I Partial answer to the above question is Yes
The proposed fix is faster,

and consumes less memory

“Channels at the head of the queue!”



1. By taking channels seriously,
can we improve data-race detection?

I Most data-race detectors are based on locks (including Go’s)
acquire and release

I Synchronization via channels is different from locks
send is not a combination of acquires and releases

I Partial answer to the above question is Yes
The proposed fix is faster,

and consumes less memory

“Channels at the head of the queue!”



1. By taking channels seriously,
can we improve data-race detection?

I Most data-race detectors are based on locks (including Go’s)
acquire and release

I Synchronization via channels is different from locks
send is not a combination of acquires and releases

I Partial answer to the above question is Yes
The proposed fix is faster, and consumes less memory

“Channels at the head of the queue!”



1. By taking channels seriously,
can we improve data-race detection?

I Most data-race detectors are based on locks (including Go’s)
acquire and release

I Synchronization via channels is different from locks
send is not a combination of acquires and releases

I Partial answer to the above question is Yes
The proposed fix is faster, and consumes less memory

“Channels at the head of the queue!”



2. Can we improve our formalization
to better match Go’s memory model?

I We have ideas on further relaxing the proposed memory model

I Can we relax the model "all the way"?
Without adding out-of-thin-air behavior into the model



2. Can we improve our formalization
to better match Go’s memory model?

I We have ideas on further relaxing the proposed memory model

I Can we relax the model "all the way"?
Without adding out-of-thin-air behavior into the model



2. Can we improve our formalization
to better match Go’s memory model?

I We have ideas on further relaxing the proposed memory model

I Can we relax the model "all the way"?

Without adding out-of-thin-air behavior into the model



2. Can we improve our formalization
to better match Go’s memory model?

I We have ideas on further relaxing the proposed memory model

I Can we relax the model "all the way"?
Without adding out-of-thin-air behavior into the model



3. How to automate bug finding?

I Connect formal model to Go compiler/runtime

I Find bugs in compiler/runtime

I Verify correctness of compiled code
across different compilation targets (HW)



3. How to automate bug finding?

I Connect formal model to Go compiler/runtime

I Find bugs in compiler/runtime

I Verify correctness of compiled code
across different compilation targets (HW)



3. How to automate bug finding?

I Connect formal model to Go compiler/runtime

I Find bugs in compiler/runtime

I Verify correctness of compiled code
across different compilation targets (HW)



3. How to automate bug finding?

I Connect formal model to Go compiler/runtime

I Find bugs in compiler/runtime

I Verify correctness of compiled code
across different compilation targets (HW)





In summary,

Specification Formal model Implementation

• Abstraction • Value-added



In summary,

Specification

Formal model

Implementation

• Abstraction • Value-added



In summary,

Specification Formal model Implementation

• Abstraction • Value-added



In summary,

Specification Formal model Implementation

• Abstraction • Value-added



In summary,

Specification Formal model Implementation

• Abstraction

• Value-added



In summary,

Specification Formal model Implementation

• Abstraction • Value-added



Questions?

Thank you



Questions?
Thank you



References

I Go memory model (2014). The Go memory model.
https://golang.org/ref/mem.
Version of May 31, 2014, covering Go version 1.9.1

I Fava, D. (2020). Finding and fixing a mismatch between the
Go memory model and data-race detector.
Submitted for publication

https://golang.org/ref/mem


References

I Fava, D. S. and Steffen, M. (2020). Ready, Set, Go!:
Data-race detection and the Go language.
Science of Computer Programming, 195:102473

I Fava, D., Steffen, M., and Stolz, V. (2018a). Operational
semantics of a weak memory model with channel
synchronization.
Journal of Logic and Algebraic Methods in Programming.
An extended version of the FM’18 publication with the same
title



References

I GitHub (2020). [37355] runtime/race: running with -race
misses races (mismatch with memory model).
https://github.com/golang/go/issues/37355

I Gerrit (2020). [220419] runtime: swap the order of
raceacquire() and racerelease().
https://go-review.googlesource.com/c/go/+/220419

I Phabricator (2020). [d76322] tsan: Adding releaseacquire() to
threadclock.
https://reviews.llvm.org/D76322

https://github.com/golang/go/issues/37355
https://go-review.googlesource.com/c/go/+/220419
https://reviews.llvm.org/D76322




We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019

Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov

Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source

2020 Jan Experimentation
Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb

Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection

First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch

Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan

Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch

Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive

May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go

Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research

Apr Tech report
2018 Jan Proofs

Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs

Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



We implemented a fix accepted by the Go community.

2017 Jan Research
Apr Tech report

2018 Jan Proofs
Jul Conference [Fava et al., 2018b]

2019 Feb Journal [Fava et al., 2018a]

2020 Apr Journal [Fava and Steffen, 2020]

2019 Nov Studying source
2020 Jan Experimentation

Feb Found bug by inspection First patch
Mar New primitive into TSan Updated patch
Apr Fix to TSan primitive
May Updated TSan lib in Go Patch approved



3. How to automate bug finding?

Implementation

Specification



3. How to automate bug finding?

Implementation

Specification



3. How to automate bug finding?

Implementation

Formal model

Specification



3. How to automate bug finding?

Implementation

Specification



3. How to automate bug finding?

CakeML
verified compiler covering a substantial subset of Standard ML



3. How to automate bug finding?

CompCert
verified C compiler covering a large subset of C99



Go is also used to program the Internet of Things (IoT).

TinyGo

https://gobot.io
https://tinygo.org
https://www.mainflux.com


Go is also used to program the Internet of Things (IoT).

TinyGo

https://gobot.io
https://tinygo.org
https://www.mainflux.com


Go is also used to program the Internet of Things (IoT).

TinyGo

https://gobot.io
https://tinygo.org
https://www.mainflux.com


Go is also used to program the Internet of Things (IoT).

TinyGo

https://gobot.io
https://tinygo.org
https://www.mainflux.com



