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A memory model informs us
how our multi-threaded programs behave.

Initially z = 0; done = false;

T1 | T2
z = 42 |
done = true | while (!done) {}

| print("t2", z)



Relaxed memory models are complex.
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Updated write-rule for efficient race detection.

(m, !z) ∈ Ehb E r
hb ⊆ Ehb fresh(m′)

E ′
hb = {(m′, !z)} ∪ (Ehb − Ehb ↓z)

p〈Ehb, z := v ′; t〉 ‖ m(|E r
hb, z :=v |) −→

p〈E ′
hb, t〉 ‖ m′(|∅, z :=v ′|)



Updated read-rule for efficient race detection.

(m, !z) ∈ Ehb fresh(m′)
E ′r

hb = {(m′, ?z)} ∪ (E r
hb − Ehb ↓z)

E ′
hb = {(m′, ?z)} ∪ (Ehb − Ehb ↓z) ∪ {(m, !z)}

p〈Ehb, let r = load z in t〉 ‖ m(|E r
hb, z :=v |) −→

p〈E ′
hb, let r = v in t〉 ‖ m(|E ′r

hb, z :=v |)



Offline garbage-collection.

E ′
hb = Ehb − {(m̂, !z) | (m̂, !z) ∈ Ehb ∧ m̂ 6= m}

− {(m̂, ?z) | (m̂, ?z) ∈ Ehb ∧ (m̂, ?z) /∈ E r
hb}

p〈Ehb, t〉 ‖ m(|E r
hb, z :=v |) −→ p〈E ′

hb, t〉 ‖ m(|E r
hb, z :=v |)





Vector clocks, Djit+, and FastTrack.

Think of a clock as natural number.
A vector clock maps a thread id to a clock.

In Djit+ and FastTrack, each thread u has a vector clock Cu,
where it keeps:

I its own time,
I the time of the most recent operation by v known to u.

Cu
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Vector clocks, Djit+, and FastTrack.

Think of a clock as natural number.
A vector clock maps a thread id to a clock.

In Djit+ and FastTrack, each thread u has a vector clock Cu,
where it keeps:

I its own time,
I the time of the most recent operation by v known to u.

Cu(v)



Complexity analysis

Djit+

Memory per thread FastTrack Our approach

worst-case O(τ) O(ντ)

best-case O(1)

O(1)

τ number of threads ν number of variables
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Memory per thread FastTrack Our approach

worst-case O(τ) O(ντ)

best-case O(1) O(1)

τ number of threads ν number of variables





Comparison with TSan.





Also in the paper

Rules for
I synchronous communication
I dynamic channel and thread creation
I data-race reporting, etc

Connection with trace theory





Summary

Data-race detection in terms of channel communication
I message passing as synchronization primitive
I no vector-clocks; based directly on happens-before relation
I most recent write, most recent reads, garbage collection
I models happens-before as described by the Go memory model
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I Proof of “minimality of information”

Least amount of event information that must be kept
Largest amount of information that can be garbage collected

Questions?
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