
Ready, set, Go!
Data-race detection and the Go language

Daniel S. Fava
danielsf@ifi.uio.no

Martin Steffen
msteffen@ifi.uio.no

Department of informatics SBMF’19
University of Oslo, Norway São Paulo, Brazil

danielsf@ifi.uio.no
msteffen@ifi.uio.no

Tools that detect data races are important.

Data races

I Subtle bugs

I Unknown semantics (under weak-memory)

Tools that detect data races are important.

Data races

I Subtle bugs

I Unknown semantics (under weak-memory)

Tools that detect data races are important.

Data races

I Subtle bugs

I Unknown semantics (under weak-memory)

Tools that detect data races are important.

Data races

I Subtle bugs

I Unknown semantics (under weak-memory)

A memory model informs us
how our multi-threaded programs behave.

A memory model informs us
how our multi-threaded programs behave.

Initially z = 0; done = false;

T1 | T2
z = 42 |
done = true | while (!done) {}

| print("t2", z)

Relaxed memory models are complex.

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then
memory behaves Sequentially Consistently (SC).

[[

P

]]sc

⊆⊆=

[[

P

]]w

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then
memory behaves Sequentially Consistently (SC).

[[

P

]]sc ⊆⊆= [[

P

]]w

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then
memory behaves Sequentially Consistently (SC).

[[

P

]]sc ⊆⊆= [[

P

]]w

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then
memory behaves Sequentially Consistently (SC).

[[P]]sc

⊆⊆= [[

P

]]w

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then
memory behaves Sequentially Consistently (SC).

[[P]]sc

⊆⊆=

[[P]]w

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then
memory behaves Sequentially Consistently (SC).

[[P]]sc ⊆

⊆=

[[P]]w

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then
memory behaves Sequentially Consistently (SC).

[[P]]sc

⊆

⊆

=

[[P]]w

The DRF-SC guarantee helps programmers.

If program is Data-Race Free (DRF) then
memory behaves Sequentially Consistently (SC).

[[P]]sc

⊆⊆

= [[P]]w

There is little about data-race detection and channels.
Instead, there has been research on...

Race detection & message passing.

I No shared memory.
I Races as competing to send-to/receive-from channels.
I Absence of races imply determinism.

Origin of the happens-before relation and vector clocks.

There is little about data-race detection and channels.
Instead, there has been research on...

Race detection & message passing.

I No shared memory.
I Races as competing to send-to/receive-from channels.
I Absence of races imply determinism.

Origin of the happens-before relation and vector clocks.

There is little about data-race detection and channels.
Instead, there has been research on...

Race detection & message passing.
I No shared memory.
I Races as competing to send-to/receive-from channels.
I Absence of races imply determinism.

Origin of the happens-before relation and vector clocks.

There is little about data-race detection and channels.
Instead, there has been research on...

Race detection & message passing.
I No shared memory.
I Races as competing to send-to/receive-from channels.
I Absence of races imply determinism.

Origin of the happens-before relation and vector clocks.

There is little about data-race detection and channels.
Instead, there has been research on...

Data-race detection & locks

Shared memory, but
no channels,
no synchronization via message passing.

There is little about data-race detection and channels.
Instead, there has been research on...

Data-race detection & locks

Shared memory, but
no channels,
no synchronization via message passing.

There is little about data-race detection and channels.
Instead, there has been research on...

Data-race detection & locks
Shared memory, but
no channels,
no synchronization via message passing.

We express race-detection for a language with
message passing as the sole synchronization primitive.

[FM’18, JLAMP’18]

We express race-detection for a language with
message passing as the sole synchronization primitive.

[FM’18, JLAMP’18]

We express race-detection for a language with
message passing as the sole synchronization primitive.

[FM’18, JLAMP’18]

II. Background

A data race constitutes memory accesses that
conflict and are concurrent.

Conflict
{

same memory location,
at least one access is a write.

Concurrent: not ordered by happens-before.

A data race constitutes memory accesses that
conflict and are concurrent.

Conflict
{

same memory location,
at least one access is a write.

Concurrent: not ordered by happens-before.

A data race constitutes memory accesses that
conflict and are concurrent.

Conflict
{

same memory location,
at least one access is a write.

Concurrent: not ordered by happens-before.

The Go memory model.

I Within a single thread,
I reads and writes must behave as if

they executed in the order specified by the program;
I reorder is allowed only when

it does not change the behavior within that thread.

I The execution order observed by one thread
may differ from the order observed by another.

[Go memory model, 2014]
replacing thread by goroutine

The Go memory model.

I Within a single thread,
I reads and writes must behave as if

they executed in the order specified by the program;

I reorder is allowed only when
it does not change the behavior within that thread.

I The execution order observed by one thread
may differ from the order observed by another.

[Go memory model, 2014]
replacing thread by goroutine

The Go memory model.

I Within a single thread,
I reads and writes must behave as if

they executed in the order specified by the program;
I reorder is allowed only when

it does not change the behavior within that thread.

I The execution order observed by one thread
may differ from the order observed by another.

[Go memory model, 2014]
replacing thread by goroutine

The Go memory model.

I Within a single thread,
I reads and writes must behave as if

they executed in the order specified by the program;
I reorder is allowed only when

it does not change the behavior within that thread.

I The execution order observed by one thread
may differ from the order observed by another.

[Go memory model, 2014]
replacing thread by goroutine

Initially z = 0; done = false;

T1 | T2
z = 42 |
done = true | if (done)

| print("t2", z)

A→hb B C→hb D

Initially z = 0; done = false;

T1 | T2
z = 42 (A) |
done = true (B) | if (done) (C)

| print("t2", z) (D)

A→hb B C→hb D

Initially z = 0; done = false;

T1 | T2
z = 42 (A) |
done = true (B) | if (done) (C)

| print("t2", z) (D)

A→hb B

C→hb D

Initially z = 0; done = false;

T1 | T2
z = 42 (A) |
done = true (B) | if (done) (C)

| print("t2", z) (D)

A→hb B C→hb D

The Go memory model.

A send happens-before the corresponding receive completes.

Given a channel c with capacity k ,
the i th receive from c happens-before the (i + k)th send completes.

[Go memory model, 2014]

The Go memory model.

A send happens-before the corresponding receive completes.

Given a channel c with capacity k ,
the i th receive from c happens-before the (i + k)th send completes.

[Go memory model, 2014]

The Go memory model.

A send happens-before the corresponding receive completes.

Given a channel c with capacity k ,
the i th receive from c happens-before the (i + k)th send completes.

[Go memory model, 2014]

Initially z = 0; done = false;

T1 | T2
z = 42 (A) |
done = true (B) | if (done) (C)

| print("t2", z) (D)

A→hb B C→hb D

B→hb C

A→hb D

Initially z = 0; done = false;

T1 | T2
z = 42 (A) |
done = true (B) | if (done) (C)

| print("t2", z) (D)

A→hb B C→hb D

B→hb C

A→hb D

Initially z = 0; done = false;

T1 | T2
z = 42 (A) |
c <- true (B) | if (done) (C)

| print("t2", z) (D)

A→hb B C→hb D

B→hb C

A→hb D

Initially z = 0; done = false;

T1 | T2
z = 42 (A) |
c <- true (B) | if (done) (C)

| print("t2", z) (D)

A→hb B C→hb D

B→hb C

A→hb D

Initially z = 0; done = false;

T1 | T2
z = 42 (A) |
c <- true (B) | if (done) (C)

| print("t2", z) (D)

A→hb B C→hb D

B→hb C

A→hb D

Initially z = 0; done = false;

T1 | T2
z = 42 (A) |
c <- true (B) | <- c (C)

| print("t2", z) (D)

A→hb B C→hb D

B→hb C

A→hb D

Initially z = 0; done = false;

T1 | T2
z = 42 (A) |
c <- true (B) | <- c (C)

| print("t2", z) (D)

A→hb B C→hb D

B→hb C

A→hb D

Initially z = 0; done = false;

T1 | T2
z = 42 (A) |
c <- true (B) | <- c (C)

| print("t2", z) (D)

A→hb B C→hb D
B→hb C

A→hb D

Initially z = 0; done = false;

T1 | T2
z = 42 (A) |
c <- true (B) | <- c (C)

| print("t2", z) (D)

A→hb B C→hb D
B→hb C

A→hb D

III. Our approach

Intuition

Efficiency

III. Our approach

Intuition

Efficiency

III. Our approach

Intuition

Efficiency

An access to memory is captured by an event
(m, ?z) (m′, !z)

Each thread keeps track of events in its past
I Happened-before set, Ehb

A memory cell keeps track of
I a variable’s value
I set of events that have happened-before to the variable, Ehb

An access to memory is captured by an event
(m, ?z) (m′, !z)

Each thread keeps track of events in its past
I Happened-before set, Ehb

A memory cell keeps track of
I a variable’s value
I set of events that have happened-before to the variable, Ehb

An access to memory is captured by an event
(m, ?z) (m′, !z)

Each thread keeps track of events in its past
I Happened-before set, Ehb

A memory cell keeps track of
I a variable’s value
I set of events that have happened-before to the variable, Ehb

An access to memory is captured by an event
(m, ?z) (m′, !z)

Each thread keeps track of events in its past
I Happened-before set, Ehb

A memory cell keeps track of
I a variable’s value
I set of events that have happened-before to the variable, Ehb

An access to memory is captured by an event
(m, ?z) (m′, !z)

Each thread keeps track of events in its past
I Happened-before set, Ehb

A memory cell keeps track of
I a variable’s value
I set of events that have happened-before to the variable, Ehb

An access to memory is captured by an event
(m, ?z) (m′, !z)

Each thread keeps track of events in its past
I Happened-before set, Ehb

A memory cell keeps track of
I a variable’s value
I set of events that have happened-before to the variable, Ehb

An access to memory is captured by an event
(m, ?z) (m′, !z)

Each thread keeps track of events in its past
I Happened-before set, Ehb

A memory cell keeps track of
I a variable’s value
I set of events that have happened-before to the variable, Ehb

An access to memory is captured by an event
(m, ?z) (m′, !z)

Each thread keeps track of events in its past
I Happened-before set, Ehb

A memory cell keeps track of
I a variable’s value
I set of events that have happened-before to the variable, Ehb

p〈Ehb, t〉

(|E z
hb, z :=v |)

p〈Ehb, t〉 (|E z
hb, z :=v |)

p〈Ehb, t〉 ‖ (|E z
hb, z :=v |)

A write is allowed to proceed if...

fresh(m)
E ′

hb = {(m, !z)} ∪ Ehb

E ′z
hb = {(m, !z)} ∪ E z

hb
E z

hb ⊆ Ehb

p〈Ehb, z := v ′; t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, t〉 ‖ (|E ′z

hb, z :=v ′|)

A write is allowed to proceed if...

fresh(m)
E ′

hb = {(m, !z)} ∪ Ehb

E ′z
hb = {(m, !z)} ∪ E z

hb
E z

hb ⊆ Ehb

p〈Ehb, z := v ′; t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, t〉 ‖ (|E ′z

hb, z :=v ′|)

A write is allowed to proceed if...

fresh(m)
E ′

hb = {(m, !z)} ∪ Ehb

E ′z
hb = {(m, !z)} ∪ E z

hb
E z

hb ⊆ Ehb

p〈Ehb, z := v ′; t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, t〉 ‖ (|E ′z

hb, z :=v ′|)

A write is allowed to proceed if...

fresh(m)

E ′
hb = {(m, !z)} ∪ Ehb

E ′z
hb = {(m, !z)} ∪ E z

hb
E z

hb ⊆ Ehb

p〈Ehb, z := v ′; t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, t〉 ‖ (|E ′z

hb, z :=v ′|)

A write is allowed to proceed if...

fresh(m)

E ′
hb = {

(m, !z)

} ∪ Ehb

E ′z
hb = {(m, !z)} ∪ E z

hb
E z

hb ⊆ Ehb

p〈Ehb, z := v ′; t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, t〉 ‖ (|E ′z

hb, z :=v ′|)

A write is allowed to proceed if...

fresh(m)
E ′

hb = {(m, !z)} ∪ Ehb

E ′z
hb = {(m, !z)} ∪ E z

hb
E z

hb ⊆ Ehb

p〈Ehb, z := v ′; t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, t〉 ‖ (|E ′z

hb, z :=v ′|)

A write is allowed to proceed if...

fresh(m)
E ′

hb = {(m, !z)} ∪ Ehb

E ′z
hb = {(m, !z)} ∪ E z

hb

E z
hb ⊆ Ehb

p〈Ehb, z := v ′; t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, t〉 ‖ (|E ′z

hb, z :=v ′|)

A write is allowed to proceed if...

fresh(m)
E ′

hb = {(m, !z)} ∪ Ehb

E ′z
hb = {(m, !z)} ∪ E z

hb

E z
hb ⊆ Ehb

p〈Ehb, z := v ′; t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, t〉 ‖ (|E ′z

hb, z :=v ′|)

A write is allowed to proceed if...

fresh(m)
E ′

hb = {(m, !z)} ∪ Ehb

E ′z
hb = {(m, !z)} ∪ E z

hb
E z

hb ⊆ Ehb

p〈Ehb, z := v ′; t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, t〉 ‖ (|E ′z

hb, z :=v ′|)

A read is allowed to proceed if...

fresh(m)
E ′

hb = {(m, ?z)} ∪ Ehb

E ′z
hb = {(m, ?z)} ∪ E z

hb
E z

hb ↓!⊆ Ehb

p〈Ehb, let r = load z in t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, let r = v in t〉 ‖ (|E ′z

hb, z :=v |)

A read is allowed to proceed if...

fresh(m)
E ′

hb = {(m, ?z)} ∪ Ehb

E ′z
hb = {(m, ?z)} ∪ E z

hb
E z

hb ↓!⊆ Ehb

p〈Ehb, let r = load z in t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, let r = v in t〉 ‖ (|E ′z

hb, z :=v |)

A read is allowed to proceed if...

fresh(m)
E ′

hb = {(m, ?z)} ∪ Ehb

E ′z
hb = {(m, ?z)} ∪ E z

hb
E z

hb ↓!⊆ Ehb

p〈Ehb, let r = load z in t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, let r = v in t〉 ‖ (|E ′z

hb, z :=v |)

A read is allowed to proceed if...

fresh(m)

E ′
hb = {(m, ?z)} ∪ Ehb

E ′z
hb = {(m, ?z)} ∪ E z

hb
E z

hb ↓!⊆ Ehb

p〈Ehb, let r = load z in t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, let r = v in t〉 ‖ (|E ′z

hb, z :=v |)

A read is allowed to proceed if...

fresh(m)

E ′
hb = {

(m, ?z)

} ∪ Ehb

E ′z
hb = {(m, ?z)} ∪ E z

hb
E z

hb ↓!⊆ Ehb

p〈Ehb, let r = load z in t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, let r = v in t〉 ‖ (|E ′z

hb, z :=v |)

A read is allowed to proceed if...

fresh(m)
E ′

hb = {(m, ?z)} ∪ Ehb

E ′z
hb = {(m, ?z)} ∪ E z

hb
E z

hb ↓!⊆ Ehb

p〈Ehb, let r = load z in t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, let r = v in t〉 ‖ (|E ′z

hb, z :=v |)

A read is allowed to proceed if...

fresh(m)
E ′

hb = {(m, ?z)} ∪ Ehb

E ′z
hb = {(m, ?z)} ∪ E z

hb

E z
hb ↓!⊆ Ehb

p〈Ehb, let r = load z in t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, let r = v in t〉 ‖ (|E ′z

hb, z :=v |)

A read is allowed to proceed if...

fresh(m)
E ′

hb = {(m, ?z)} ∪ Ehb

E ′z
hb = {(m, ?z)} ∪ E z

hb

E z
hb ↓!⊆ Ehb

p〈Ehb, let r = load z in t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, let r = v in t〉 ‖ (|E ′z

hb, z :=v |)

A read is allowed to proceed if...

fresh(m)
E ′

hb = {(m, ?z)} ∪ Ehb

E ′z
hb = {(m, ?z)} ∪ E z

hb
E z

hb ↓!⊆ Ehb

p〈Ehb, let r = load z in t〉 ‖ (|E z
hb, z :=v |)

−→ p〈E ′
hb, let r = v in t〉 ‖ (|E ′z

hb, z :=v |)

Sends and Receives transmit a thread’s happens-before set

Threads “learn” from each other about past events

Sends and Receives transmit a thread’s happens-before set

Threads “learn” from each other about past events

Channel receive

v 6= ⊥ E ′
hb = Ehb + E ′′

hb

cb[q1] ‖ p〈Ehb, let r =← c in t〉 ‖ cf [q2 :: (v ,E ′′
hb)] −→

cb[Ehb :: q1] ‖ p〈E ′
hb, let r = v in t〉 ‖ cf [q2]

Channel receive

v 6= ⊥ E ′
hb = Ehb + E ′′

hb

cb[q1] ‖ p〈Ehb, let r =← c in t〉 ‖ cf [q2 :: (v ,E ′′
hb)] −→

cb[Ehb :: q1] ‖ p〈E ′
hb, let r = v in t〉 ‖ cf [q2]

Channel receive

v 6= ⊥ E ′
hb = Ehb + E ′′

hb

cb[q1] ‖ p〈Ehb, let r =← c in t〉 ‖ cf [q2 :: (v ,E ′′
hb)] −→

cb[Ehb :: q1] ‖ p〈E ′
hb, let r = v in t〉 ‖ cf [q2]

Channel send

¬closed(cf [q2]) E ′
hb = Ehb + E ′′

hb

cb[q1 :: E ′′
hb] ‖ p〈Ehb, c ← v ; t〉 ‖ cf [q2] −→

cb[q1] ‖ p〈E ′
hb, t〉 ‖ cf [(v ,Ehb) :: q2]

Efficiency

z0

(z!)p
hb

(z!)p
hb

· · · (z!)p
hb

(z!)p′

hb

z0 (z!)p

hb
(z!)p

hb
· · · (z!)p

hb

(z!)p′

hb

z0 (z!)p
hb

(z!)p
hb

· · · (z!)p
hb

(z!)p′

hb

z0 (z!)p
hb

(z!)p

hb
· · · (z!)p

hb

(z!)p′

hb

z0 (z!)p
hb

(z!)p
hb

· · · (z!)p
hb

(z!)p′

hb

z0 (z!)p
hb

(z!)p
hb

· · · (z!)p
hb

(z!)p′

hb

z0 (z!)p
hb

(z!)p
hb

· · · (z!)p
hb

(z!)p′

hb

z0 (z!)p
hb

(z!)p
hb

· · · (z!)p
hb

(z!)p′

hb

hb

z0 (z!)p
hb

(z!)p
hb

· · · (z!)p
hb

(z!)p′

hb

hb

z0 (z!)p
hb

(z!)p
hb

· · · (z!)p
hb

(z!)p′

hb

hb

z0 (z!)p
hb

(z!)p
hb

· · · (z!)p
hb

(z!)p′

hb

(|E z
hb, z :=v |)

(m, !z), (m′, ?z) ∈ E z
hb

Remember only the last write

m(|E r
hb, z :=v |)

E z
hb ↓! (m, !z)

(|E z
hb, z :=v |)

(m, !z), (m′, ?z) ∈ E z
hb

Remember only the last write

m(|E r
hb, z :=v |)

E z
hb ↓! (m, !z)

(|E z
hb, z :=v |)

(m, !z), (m′, ?z) ∈ E z
hb

Remember only the last write

m(|E r
hb, z :=v |)

E z
hb ↓! (m, !z)

(|E z
hb, z :=v |)

(m, !z), (m′, ?z) ∈ E z
hb

Remember only the last write

m(|E r
hb, z :=v |)

E z
hb ↓! (m, !z)

(|E z
hb, z :=v |)

(m, !z), (m′, ?z) ∈ E z
hb

Remember only the last write

m(|E r
hb, z :=v |)

E z
hb ↓!

(m, !z)

(|E z
hb, z :=v |)

(m, !z), (m′, ?z) ∈ E z
hb

Remember only the last write

m(|E r
hb, z :=v |)

E z
hb ↓! (m, !z)

(z!)p

(z?)p
hb

(z?)p′

(z?)p′′

hb

hb

(z?)p (z?)p
hb hb

(z?)p′′
hb

(z!)p
hb

hb

(z!)p (z?)p

hb

(z?)p′

(z?)p′′

hb

hb

(z?)p (z?)p
hb hb

(z?)p′′
hb

(z!)p
hb

hb

(z!)p (z?)p
hb

(z?)p′

(z?)p′′

hb

hb

(z?)p (z?)p
hb hb

(z?)p′′
hb

(z!)p
hb

hb

(z!)p (z?)p
hb

(z?)p′

(z?)p′′

hb

hb

(z?)p (z?)p
hb hb

(z?)p′′
hb

(z!)p
hb

hb

(z!)p (z?)p
hb

(z?)p′

(z?)p′′

hb

hb

(z?)p (z?)p
hb hb

(z?)p′′
hb

(z!)p
hb

hb

(z!)p (z?)p
hb

(z?)p′

(z?)p′′

hb

hb

(z?)p (z?)p
hb hb

(z?)p′′
hb

(z!)p
hb

hb

(z!)p (z?)p
hb

(z?)p′

(z?)p′′

hb

hb

(z?)p (z?)p
hb hb

(z?)p′′
hb

(z!)p

hb

hb

(z!)p (z?)p
hb

(z?)p′

(z?)p′′

hb

hb

(z?)p (z?)p
hb hb

(z?)p′′
hb

(z!)p
hb

hb

(z!)p (z?)p
hb

(z?)p′

(z?)p′′

hb

hb

(z?)p (z?)p
hb hb

(z?)p′′
hb

(z!)p
hb

hb

(z!)p (z?)p
hb

(z?)p′

(z?)p′′

hb

hb

(z?)p (z?)p
hb hb

(z?)p′′
hb

(z!)p
hb

hb

(z!)p (z?)p
hb

(z?)p′

(z?)p′′

hb

hb

(z?)p (z?)p
hb hb

(z?)p′′
hb

(z!)p
hb

hb

Updated write-rule for efficient race detection.

(m, !z) ∈ Ehb E r
hb ⊆ Ehb fresh(m′)

E ′
hb = {(m′, !z)} ∪ (Ehb − Ehb ↓z)

p〈Ehb, z := v ′; t〉 ‖ m(|E r
hb, z :=v |) −→

p〈E ′
hb, t〉 ‖ m′(|∅, z :=v ′|)

Updated read-rule for efficient race detection.

(m, !z) ∈ Ehb fresh(m′)
E ′r

hb = {(m′, ?z)} ∪ (E r
hb − Ehb ↓z)

E ′
hb = {(m′, ?z)} ∪ (Ehb − Ehb ↓z) ∪ {(m, !z)}

p〈Ehb, let r = load z in t〉 ‖ m(|E r
hb, z :=v |) −→

p〈E ′
hb, let r = v in t〉 ‖ m(|E ′r

hb, z :=v |)

Offline garbage-collection.

E ′
hb = Ehb − {(m̂, !z) | (m̂, !z) ∈ Ehb ∧ m̂ 6= m}

− {(m̂, ?z) | (m̂, ?z) ∈ Ehb ∧ (m̂, ?z) /∈ E r
hb}

p〈Ehb, t〉 ‖ m(|E r
hb, z :=v |) −→ p〈E ′

hb, t〉 ‖ m(|E r
hb, z :=v |)

Vector clocks, Djit+, and FastTrack.

Think of a clock as natural number.
A vector clock maps a thread id to a clock.

In Djit+ and FastTrack, each thread u has a vector clock Cu,
where it keeps:

I its own time,
I the time of the most recent operation by v known to u.

Cu

(v)

Vector clocks, Djit+, and FastTrack.

Think of a clock as natural number.
A vector clock maps a thread id to a clock.

In Djit+ and FastTrack, each thread u has a vector clock Cu,

where it keeps:
I its own time,
I the time of the most recent operation by v known to u.

Cu

(v)

Vector clocks, Djit+, and FastTrack.

Think of a clock as natural number.
A vector clock maps a thread id to a clock.

In Djit+ and FastTrack, each thread u has a vector clock Cu,
where it keeps:

I its own time,

I the time of the most recent operation by v known to u.

Cu

(v)

Vector clocks, Djit+, and FastTrack.

Think of a clock as natural number.
A vector clock maps a thread id to a clock.

In Djit+ and FastTrack, each thread u has a vector clock Cu,
where it keeps:

I its own time,
I the time of the most recent operation by v known to u.

Cu

(v)

Vector clocks, Djit+, and FastTrack.

Think of a clock as natural number.
A vector clock maps a thread id to a clock.

In Djit+ and FastTrack, each thread u has a vector clock Cu,
where it keeps:

I its own time,
I the time of the most recent operation by v known to u.

Cu

(v)

Vector clocks, Djit+, and FastTrack.

Think of a clock as natural number.
A vector clock maps a thread id to a clock.

In Djit+ and FastTrack, each thread u has a vector clock Cu,
where it keeps:

I its own time,
I the time of the most recent operation by v known to u.

Cu(v)

Complexity analysis

Djit+

Memory per thread FastTrack Our approach

worst-case O(τ) O(ντ)

best-case O(1)

O(1)

τ number of threads ν number of variables

Complexity analysis

Djit+

Memory per thread FastTrack Our approach

worst-case O(τ) O(ντ)

best-case O(1)

O(1)

τ number of threads ν number of variables

Complexity analysis

Djit+

Memory per thread FastTrack Our approach

worst-case O(τ) O(ντ)

best-case O(1)

O(1)

τ number of threads ν number of variables

Complexity analysis

Djit+

Memory per thread FastTrack Our approach

worst-case O(τ) O(ντ)

best-case O(1) O(1)

τ number of threads ν number of variables

Comparison with TSan.

Also in the paper

Rules for
I synchronous communication
I dynamic channel and thread creation
I data-race reporting, etc

Connection with trace theory

Summary

Data-race detection in terms of channel communication
I message passing as synchronization primitive
I no vector-clocks; based directly on happens-before relation
I most recent write, most recent reads, garbage collection
I models happens-before as described by the Go memory model

Summary

Data-race detection in terms of channel communication

I message passing as synchronization primitive
I no vector-clocks; based directly on happens-before relation
I most recent write, most recent reads, garbage collection
I models happens-before as described by the Go memory model

Summary

Data-race detection in terms of channel communication
I message passing as synchronization primitive

I no vector-clocks; based directly on happens-before relation
I most recent write, most recent reads, garbage collection
I models happens-before as described by the Go memory model

Summary

Data-race detection in terms of channel communication
I message passing as synchronization primitive
I no vector-clocks; based directly on happens-before relation

I most recent write, most recent reads, garbage collection
I models happens-before as described by the Go memory model

Summary

Data-race detection in terms of channel communication
I message passing as synchronization primitive
I no vector-clocks; based directly on happens-before relation
I most recent write, most recent reads, garbage collection

I models happens-before as described by the Go memory model

Summary

Data-race detection in terms of channel communication
I message passing as synchronization primitive
I no vector-clocks; based directly on happens-before relation
I most recent write, most recent reads, garbage collection
I models happens-before as described by the Go memory model

Future work

I Implementation
I Proof of “minimality of information”

Least amount of event information that must be kept
Largest amount of information that can be garbage collected

Questions?

Future work

I Implementation

I Proof of “minimality of information”
Least amount of event information that must be kept
Largest amount of information that can be garbage collected

Questions?

Future work

I Implementation
I Proof of “minimality of information”

Least amount of event information that must be kept
Largest amount of information that can be garbage collected

Questions?

Future work

I Implementation
I Proof of “minimality of information”

Least amount of event information that must be kept
Largest amount of information that can be garbage collected

Questions?

Future work

I Implementation
I Proof of “minimality of information”

Least amount of event information that must be kept
Largest amount of information that can be garbage collected

Questions?

Future work

I Implementation
I Proof of “minimality of information”

Least amount of event information that must be kept
Largest amount of information that can be garbage collected

Questions?

References

I Go memory model (2014). The Go memory model.
https://golang.org/ref/mem.
Version of May 31, 2014, covering Go version 1.9.1

I Fava, D. and Steffen, M. (2019). Ready, set, Go! Data-race
detection and the Go language.
To appear in the pre-proceedings of the Brazilian Symposium
on Formal Methods (SBMF).
http://arxiv.org/abs/1910.12643

https://golang.org/ref/mem
http://arxiv.org/abs/1910.12643

References

I Fava, D., Steffen, M., and Stolz, V. (2018b). Operational
semantics of a weak memory model with channel
synchronization.
Journal of Logic and Algebraic Methods in Programming.
An extended version of the FM’18 publication with the same
title

I Fava, D., Steffen, M., and Stolz, V. (2018a). Operational
semantics of a weak memory model with channel
synchronization.
In Havelund, K., Peleska, J., Roscoe, B., and de Vink, E.,
editors, FM, volume 10951 of Lecture Notes in Computer
Science, pages 1–19. Springer Verlag

I French, R. Gopher figure by Renee French.
https://blog.golang.org/gopher

