
Operational Semantics of a

Weak Memory Model with

Channel Communication

Daniel S. Fava
Martin Ste↵en
Volker Stolz

Department of informatics
University of Oslo, Norway

memory
model

channel
communication

)⌅
⌅

operational
semantics

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

In a single thread case) program order

Informs how threads interact through shared memory

Initially z = 0

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

In a single thread case) program order

Informs how threads interact through shared memory

Initially z = 0

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

In a single thread case) program order

Informs how threads interact through shared memory

Initially z = 0

T0

z := 42

flag := 1

load z

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

In a single thread case) program order

Informs how threads interact through shared memory

Initially z = 0

T0

z := 42

flag := 1

load z

z =?

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

In a single thread case) program order

Informs how threads interact through shared memory

Initially z = 0

T0

z := 42

flag := 1

load z

z = 42

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

In a single thread case) program order

Informs how threads interact through shared memory

Initially z = 0

T0

z := 42

flag := 1

load z

z = 42

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

In a single thread case) program order

Informs how threads interact through shared memory

Initially z = 0

T0 | T1

z := 42 |

flag := 1 | load flag

load z | load z

z = 42

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

In a single thread case) program order

Informs how threads interact through shared memory

Initially z = 0

T0 | T1

z := 42 |

flag := 1 | load flag

load z | load z

z = 42

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

In a single thread case) program order

Informs how threads interact through shared memory

Initially z = 0

T0 | T1

z := 42 |

flag := 1 | load flag

load z | load z

z = 42 flag = 1) z =?

Sequential consistency

Memory as a shared global repository where
operations appear atomic and in program order

+ Simple to reason bout

- Does not reflect modern hardware

- Restricts compiler optimizations

Initially z = 0

T0 | T1

z := 42 |

flag := 1 | load flag

load z | load z

z = 42 flag = 1) z = 42

Sequential consistency

Memory as a shared global repository where
operations appear atomic and in program order

+ Simple to reason bout

- Does not reflect modern hardware

- Restricts compiler optimizations

Initially z = 0

T0 | T1

z := 42 |

flag := 1 | load flag

load z | load z

z = 42 flag = 1) z = 42

Sequential consistency

Memory as a shared global repository where
operations appear atomic and in program order

+ Simple to reason bout

- Does not reflect modern hardware

- Restricts compiler optimizations

Initially z = 0

T0 | T1

z := 42 |

flag := 1 | load flag

load z | load z

z = 42 flag = 1) z = 42

Weak memory

Relaxations to the order of memory operations

Motivated by e�ciency (synchronize only when needed)

Cognitive burden placed on the programmer

Initially z = 0

T0 | T1

z := 42 |

flag := 1 | load flag

load z | load z

z = 42 flag = 1) z 2 {0, 42}

Weak memory

Relaxations to the order of memory operations

Motivated by e�ciency (synchronize only when needed)

Cognitive burden placed on the programmer

Initially z = 0

T0 | T1

z := 42 |

flag := 1 | load flag

load z | load z

z = 42 flag = 1) z 2 {0, 42}

Weak memory

Relaxations to the order of memory operations

Motivated by e�ciency (synchronize only when needed)

Cognitive burden placed on the programmer

Initially z = 0

T0 | T1

z := 42 |

flag := 1 | load flag

load z | load z

z = 42 flag = 1) z 2 {0, 42}

Weak memory

Relaxations to the order of memory operations

Motivated by e�ciency (synchronize only when needed)

Cognitive burden placed on the programmer

Initially z = 0

T0 | T1

z := 42 |

flag := 1 | load flag

load z | load z

z = 42 flag = 1) z 2 {0, 42}

Weak memory

Relaxations to the order of memory operations

Motivated by e�ciency (synchronize only when needed)

Cognitive burden placed on the programmer

Initially z = 0

T0 | T1

z := 42 |

flag := 1 | load flag

load z | load z

z = 42 flag = 1) z 2 {0, 42}

Memory models often focus on locks, barriers, semaphores
as synchronization primitives

Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally, and focusing on (intuitive)

channel communication for synchronization (novel)

We took inspiration from the Go language

Memory models often focus on locks, barriers, semaphores
as synchronization primitives

Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally, and focusing on (intuitive)

channel communication for synchronization (novel)

We took inspiration from the Go language

Memory models often focus on locks, barriers, semaphores
as synchronization primitives

Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally

, and focusing on (intuitive)

channel communication for synchronization (novel)

We took inspiration from the Go language

Memory models often focus on locks, barriers, semaphores
as synchronization primitives

Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally

, and focusing on

(intuitive)

channel communication for synchronization (novel)

We took inspiration from the Go language

Memory models often focus on locks, barriers, semaphores
as synchronization primitives

Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally, and focusing on (intuitive)

channel communication for synchronization

(novel)

We took inspiration from the Go language

Memory models often focus on locks, barriers, semaphores
as synchronization primitives

Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally, and focusing on (intuitive)

channel communication for synchronization (novel)

We took inspiration from the Go language

Memory models often focus on locks, barriers, semaphores
as synchronization primitives

Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally, and focusing on (intuitive)

channel communication for synchronization (novel)

We took inspiration from the Go language

Models often described from a hardware-centric perspective

Write bu↵ers, caches, (pipeline) flushes, etc.

We took a “software” perspective

focus on reasoning about program behavior

account for hardware and compiler implementations

but not concerned with being “implementable”

Freed us to think about a (potentially) simpler model

Models often described from a hardware-centric perspective

Write bu↵ers, caches, (pipeline) flushes, etc.

We took a “software” perspective

focus on reasoning about program behavior

account for hardware and compiler implementations

but not concerned with being “implementable”

Freed us to think about a (potentially) simpler model

Models often described from a hardware-centric perspective

Write bu↵ers, caches, (pipeline) flushes, etc.

We took a “software” perspective

focus on reasoning about program behavior

account for hardware and compiler implementations

but not concerned with being “implementable”

Freed us to think about a (potentially) simpler model

Models often described from a hardware-centric perspective

Write bu↵ers, caches, (pipeline) flushes, etc.

We took a “software” perspective

focus on reasoning about program behavior

account for hardware and compiler implementations

but not concerned with being “implementable”

Freed us to think about a (potentially) simpler model

Models often described from a hardware-centric perspective

Write bu↵ers, caches, (pipeline) flushes, etc.

We took a “software” perspective

focus on reasoning about program behavior

account for hardware and compiler implementations

but not concerned with being “implementable”

Freed us to think about a (potentially) simpler model

Models often described from a hardware-centric perspective

Write bu↵ers, caches, (pipeline) flushes, etc.

We took a “software” perspective

focus on reasoning about program behavior

account for hardware and compiler implementations

but not concerned with being “implementable”

Freed us to think about a (potentially) simpler model

Order and Observability

Within a single thread,

reads and writes must behave as if

they executed in the order specified by the program;

reorder is allowed only when

it does not change the behavior within that thread.

The execution order observed by one thread

may di↵er from the order observed by another.

replace thread by goroutine

[Go memory model, 2014]

Order and Observability

Within a single thread,

reads and writes must behave as if

they executed in the order specified by the program;

reorder is allowed only when

it does not change the behavior within that thread.

The execution order observed by one thread

may di↵er from the order observed by another.

replace thread by goroutine

[Go memory model, 2014]

Order and Observability

Within a single thread,

reads and writes must behave as if

they executed in the order specified by the program;

reorder is allowed only when

it does not change the behavior within that thread.

The execution order observed by one thread

may di↵er from the order observed by another.

replace thread by goroutine

[Go memory model, 2014]

Order and Observability

Within a single thread,

reads and writes must behave as if

they executed in the order specified by the program;

reorder is allowed only when

it does not change the behavior within that thread.

The execution order observed by one thread

may di↵er from the order observed by another.

replace thread by goroutine

[Go memory model, 2014]

Order

Happens-before relation [Lamport, 1978]

A relation on events. e !
hb

e

0

A!
hb

B C!
hb

D

Just because A!
hb

B, it does not mean A occurred before B

Just because B occurred before C, it does not mean B!
hb

C

No ordering between events of di↵erent threads
A!

hb

B ^ C!
hb

D ; A!
hb

D

Order

Happens-before relation [Lamport, 1978]

A relation on events. e !
hb

e

0

T0

z := 42

flag := 1

A!
hb

B C!
hb

D

Just because A!
hb

B, it does not mean A occurred before B

Just because B occurred before C, it does not mean B!
hb

C

No ordering between events of di↵erent threads
A!

hb

B ^ C!
hb

D ; A!
hb

D

Order

Happens-before relation [Lamport, 1978]

A relation on events. e !
hb

e

0

T0

z := 42 (A)

flag := 1 (B)

A!
hb

B C!
hb

D

Just because A!
hb

B, it does not mean A occurred before B

Just because B occurred before C, it does not mean B!
hb

C

No ordering between events of di↵erent threads
A!

hb

B ^ C!
hb

D ; A!
hb

D

Order

Happens-before relation [Lamport, 1978]

A relation on events. e !
hb

e

0

T0

z := 42 (A)

flag := 1 (B)

A!
hb

B

C!
hb

D

Just because A!
hb

B, it does not mean A occurred before B

Just because B occurred before C, it does not mean B!
hb

C

No ordering between events of di↵erent threads
A!

hb

B ^ C!
hb

D ; A!
hb

D

Order

Happens-before relation [Lamport, 1978]

A relation on events. e !
hb

e

0

T0 | T1

z := 42 (A) | load flag

flag := 1 (B) | load z

A!
hb

B

C!
hb

D

Just because A!
hb

B, it does not mean A occurred before B

Just because B occurred before C, it does not mean B!
hb

C

No ordering between events of di↵erent threads
A!

hb

B ^ C!
hb

D ; A!
hb

D

Order

Happens-before relation [Lamport, 1978]

A relation on events. e !
hb

e

0

T0 | T1

z := 42 (A) | load flag (C)

flag := 1 (B) | load z (D)

A!
hb

B

C!
hb

D

Just because A!
hb

B, it does not mean A occurred before B

Just because B occurred before C, it does not mean B!
hb

C

No ordering between events of di↵erent threads
A!

hb

B ^ C!
hb

D ; A!
hb

D

Order

Happens-before relation [Lamport, 1978]

A relation on events. e !
hb

e

0

T0 | T1

z := 42 (A) | load flag (C)

flag := 1 (B) | load z (D)

A!
hb

B C!
hb

D

Just because A!
hb

B, it does not mean A occurred before B

Just because B occurred before C, it does not mean B!
hb

C

No ordering between events of di↵erent threads
A!

hb

B ^ C!
hb

D ; A!
hb

D

Order

Happens-before relation [Lamport, 1978]

A relation on events. e !
hb

e

0

T0 | T1

z := 42 (A) | load flag (C)

flag := 1 (B) | load z (D)

A!
hb

B C!
hb

D

Just because A!
hb

B, it does not mean A occurred before B

Just because B occurred before C, it does not mean B!
hb

C

No ordering between events of di↵erent threads
A!

hb

B ^ C!
hb

D ; A!
hb

D

Order

Happens-before relation [Lamport, 1978]

A relation on events. e !
hb

e

0

T0 | T1

z := 42 (A) | load flag (C)

flag := 1 (B) | load z (D)

A!
hb

B C!
hb

D

Just because A!
hb

B, it does not mean A occurred before B

Just because B occurred before C, it does not mean B!
hb

C

No ordering between events of di↵erent threads
A!

hb

B ^ C!
hb

D ; A!
hb

D

Order

Happens-before relation [Lamport, 1978]

A relation on events. e !
hb

e

0

T0 | T1

z := 42 (A) | load flag (C)

flag := 1 (B) | load z (D)

A!
hb

B C!
hb

D

Just because A!
hb

B, it does not mean A occurred before B

Just because B occurred before C, it does not mean B!
hb

C

No ordering between events of di↵erent threads
A!

hb

B ^ C!
hb

D ; A!
hb

D

Order

Happens-before relation [Lamport, 1978]

A relation on events. e !
hb

e

0

T0 | T1

z := 42 (A) | load flag (C)

flag := 1 (B) | load z (D)

A!
hb

B C!
hb

D

Just because A!
hb

B, it does not mean A occurred before B

Just because B occurred before C, it does not mean B!
hb

C

No ordering between events of di↵erent threads
A!

hb

B ^ C!
hb

D ; A!
hb

D

Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

r !
hb

w

w !
hb

w

0 !
hb

r

for some write w 0 to z

[Go memory model, 2014]

A!
hb

B

A’!
hb

B’!
hb

C’

B’ shadows A’

relative to a thread

Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

r !
hb

w

w !
hb

w

0 !
hb

r

for some write w 0 to z

[Go memory model, 2014]

A!
hb

B

A’!
hb

B’!
hb

C’

B’ shadows A’

relative to a thread

Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

r !
hb

w

w !
hb

w

0 !
hb

r

for some write w 0 to z

[Go memory model, 2014]

A!
hb

B

A’!
hb

B’!
hb

C’

B’ shadows A’

relative to a thread

Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

r !
hb

w

w !
hb

w

0 !
hb

r

for some write w 0 to z

[Go memory model, 2014]

T

load z

z := 42

A!
hb

B

A’!
hb

B’!
hb

C’

B’ shadows A’

relative to a thread

Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

r !
hb

w

w !
hb

w

0 !
hb

r

for some write w 0 to z

[Go memory model, 2014]

T

load z (A)

z := 42 (B)

A!
hb

B

A’!
hb

B’!
hb

C’

B’ shadows A’

relative to a thread

Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

r !
hb

w

w !
hb

w

0 !
hb

r

for some write w 0 to z

[Go memory model, 2014]

T

load z (A)

z := 42 (B)

T’

z := 1

z := 2

load z

A!
hb

B

A’!
hb

B’!
hb

C’

B’ shadows A’

relative to a thread

Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

r !
hb

w

w !
hb

w

0 !
hb

r

for some write w 0 to z

[Go memory model, 2014]

T

load z (A)

z := 42 (B)

T’

z := 1 (A’)

z := 2 (B’)

load z (C’)

A!
hb

B

A’!
hb

B’!
hb

C’

B’ shadows A’

relative to a thread

Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

r !
hb

w

w !
hb

w

0 !
hb

r

for some write w 0 to z

[Go memory model, 2014]

T

load z (A)

z := 42 (B)

T’

z := 1 (A’)

z := 2 (B’)

load z (C’)

A!
hb

B

A’!
hb

B’!
hb

C’

B’ shadows A’

relative to a thread

Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

r !
hb

w

w !
hb

w

0 !
hb

r

for some write w 0 to z

[Go memory model, 2014]

T

load z (A)

z := 42 (B)

T’

z := 1 (A’)

z := 2 (B’)

load z (C’)

A!
hb

B

A’!
hb

B’!
hb

C’

B’ shadows A’

relative to a thread

Our model

Memory is a set of write events m(|z :=v |)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:
recording the write as having happened in the past

recording writes that became un-observable

Our model

Memory is a set of write events m(|z :=v |)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:
recording the write as having happened in the past

recording writes that became un-observable

Our model

Memory is a set of write events m(|z :=v |)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:
recording the write as having happened in the past

recording writes that became un-observable

Our model

Memory is a set of write events m(|z :=v |)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:

read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:
recording the write as having happened in the past

recording writes that became un-observable

Our model

Memory is a set of write events m(|z :=v |)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:
recording the write as having happened in the past

recording writes that became un-observable

Our model

Memory is a set of write events m(|z :=v |)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:

recording the write as having happened in the past

recording writes that became un-observable

Our model

Memory is a set of write events m(|z :=v |)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:
recording the write as having happened in the past

recording writes that became un-observable

Our model

Memory is a set of write events m(|z :=v |)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:
recording the write as having happened in the past

recording writes that became un-observable

Read
ph�, let r = load z in ti

Read
ph�, let r = load z in ti k m(|z :=v |)

Read
ph�, let r = load z in ti k m(|z :=v |)
=) ph�, let r = v in ti k m(|z :=v |)

� = (,E
s

) m /2 E

s

Read
ph�, let r = load z in ti k m(|z :=v |)
=) ph�, let r = v in ti k m(|z :=v |)

Write
ph�, z := v ; ti

Write
ph�, z := v ; ti =) ph�0, ti k m(|z :=v |)

fresh(m)
Write

ph�, z := v ; ti =) ph�0, ti k m(|z :=v |)

� = (E
hb

,E
s

) fresh(m)
Write

ph�, z := v ; ti =) ph�0, ti k m(|z :=v |)

� = (E
hb

,E
s

) �0 = (E
hb

+ (m, z),E
s

+ E

hb

(z)) fresh(m)
Write

ph�, z := v ; ti =) ph�0, ti k m(|z :=v |)

Synchronization

Motivating example

Producer | Consumer

z := 42 (A) | while (flag != 1) {} (C)

flag := 1 (B) | load z (D)

A!
hb

B C!
hb

D

Synchronization via channel communication

A!
hb

D

Producer | Consumer

z := 42 (A) | while (flag != 1) {} (C)

flag := 1 (B) | load z (D)

A!
hb

B C!
hb

D

B!
hb

?

C

Synchronization via channel communication

A!
hb

D

Producer | Consumer

z := 42 (A) | while (flag != 1) {} (C)

flag := 1 (B) | load z (D)

A!
hb

B C!
hb

D

B!
hb

?

C

Synchronization via channel communication

A!
hb

D

Producer | Consumer

z := 42 (A) | while (flag != 1) {} (C)

(B) | load z (D)

A!
hb

B C!
hb

D

B!
hb

?

C

Synchronization via channel communication

A!
hb

D

Producer | Consumer

z := 42 (A) | while (flag != 1) {} (C)

c <- 0 (B) | load z (D)

A!
hb

B C!
hb

D

B!
hb

?

C

Synchronization via channel communication

A!
hb

D

Producer | Consumer

z := 42 (A) | (C)

c <- 0 (B) | load z (D)

A!
hb

B C!
hb

D

B!
hb

?

C

Synchronization via channel communication

A!
hb

D

Producer | Consumer

z := 42 (A) | <- c (C)

c <- 0 (B) | load z (D)

A!
hb

B C!
hb

D

B!
hb

?

C

Synchronization via channel communication

A!
hb

D

Producer | Consumer

z := 42 (A) | <- c (C)

c <- 0 (B) | load z (D)

A!
hb

B C!
hb

D

B!
hb

C

Synchronization via channel communication

A!
hb

D

Producer | Consumer

z := 42 (A) | <- c (C)

c <- 0 (B) | load z (D)

A!
hb

B C!
hb

D

B!
hb

C

Synchronization via channel communication

A!
hb

D

Send
ph�, c v ; ti k c[q]

Send
ph�, c v ; ti k c[q] =)

ph�0, ti k c[(v ,�) :: q]

¬closed(c[q
2

]) �0 = � + �00

Send
c

b

[q
1

:: �00] k ph�, c v ; ti k c[q
2

] =)
c

b

[q
1

] k ph�0, ti k c[(v ,�) :: q
2

]

Rec
ph�, let r = c in ti k c[q :: (v ,�00)]

�0 = � + �00

Rec
ph�, let r = c in ti k c[q :: (v ,�00)] =)
ph�0, let r = v in ti k c[q]

v 6= ? �0 = � + �00

Rec
c

b

[q
1

] k ph�, let r = c in ti k c[q
2

:: (v ,�00)] =)
c

b

[� :: q
1

] k ph�0, let r = v in ti k c[q
2

]

We have seen so far,

Operational semantics of a weak memory model with channels

Memory is a set of write events
as opposed to a mapping of variables to values

Writes become observable globally and immediately

Order (HB) and observability (shadowing)
is thread local

and travels on channels, implicitly

Synchronization as restriction on observability

We have seen so far,

Operational semantics of a weak memory model with channels

Memory is a set of write events
as opposed to a mapping of variables to values

Writes become observable globally and immediately

Order (HB) and observability (shadowing)
is thread local

and travels on channels, implicitly

Synchronization as restriction on observability

We have seen so far,

Operational semantics of a weak memory model with channels

Memory is a set of write events
as opposed to a mapping of variables to values

Writes become observable globally and immediately

Order (HB) and observability (shadowing)
is thread local

and travels on channels, implicitly

Synchronization as restriction on observability

We have seen so far,

Operational semantics of a weak memory model with channels

Memory is a set of write events
as opposed to a mapping of variables to values

Writes become observable globally and immediately

Order (HB) and observability (shadowing)
is thread local

and travels on channels, implicitly

Synchronization as restriction on observability

We have seen so far,

Operational semantics of a weak memory model with channels

Memory is a set of write events
as opposed to a mapping of variables to values

Writes become observable globally and immediately

Order (HB) and observability (shadowing)

is thread local

and travels on channels, implicitly

Synchronization as restriction on observability

We have seen so far,

Operational semantics of a weak memory model with channels

Memory is a set of write events
as opposed to a mapping of variables to values

Writes become observable globally and immediately

Order (HB) and observability (shadowing)
is thread local

and travels on channels, implicitly

Synchronization as restriction on observability

We have seen so far,

Operational semantics of a weak memory model with channels

Memory is a set of write events
as opposed to a mapping of variables to values

Writes become observable globally and immediately

Order (HB) and observability (shadowing)
is thread local

and travels on channels, implicitly

Synchronization as restriction on observability

We have seen so far,

Operational semantics of a weak memory model with channels

Memory is a set of write events
as opposed to a mapping of variables to values

Writes become observable globally and immediately

Order (HB) and observability (shadowing)
is thread local

and travels on channels, implicitly

Synchronization as restriction on observability

Correctness

Relating the weak model to a sequentially consistent model

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

Allows programmers to think in terms of strong memory

Write it once, run it everywhere
provided program is DRF and memory models are SC-DRF

P

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

Allows programmers to think in terms of strong memory

Write it once, run it everywhere
provided program is DRF and memory models are SC-DRF

P

w

0

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

Allows programmers to think in terms of strong memory

Write it once, run it everywhere
provided program is DRF and memory models are SC-DRF

P

w

0

w

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

Allows programmers to think in terms of strong memory

Write it once, run it everywhere
provided program is DRF and memory models are SC-DRF

P

w

0

w

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

Allows programmers to think in terms of strong memory

Write it once, run it everywhere
provided program is DRF and memory models are SC-DRF

P

w

0

s

0

w

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

Allows programmers to think in terms of strong memory

Write it once, run it everywhere
provided program is DRF and memory models are SC-DRF

P

w

0

s

0

w s

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

Allows programmers to think in terms of strong memory

Write it once, run it everywhere
provided program is DRF and memory models are SC-DRF

P

w

0

s

0

w s

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

Allows programmers to think in terms of strong memory

Write it once, run it everywhere
provided program is DRF and memory models are SC-DRF

P

w

0

s

0

w s

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

Allows programmers to think in terms of strong memory

Write it once, run it everywhere
provided program is DRF and memory models are SC-DRF

P

w

0

s

0

w s

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

Allows programmers to think in terms of strong memory

Write it once, run it everywhere
provided program is DRF and memory models are SC-DRF

P

w

0

s

0

w s

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

Allows programmers to think in terms of strong memory

Write it once, run it everywhere
provided program is DRF and memory models are SC-DRF

DRF (P)

w

0

s

0

w s

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

Allows programmers to think in terms of strong memory

Write it once, run it everywhere
provided program is DRF and memory models are SC-DRF

DRF (P)

w

0

s

0

w s

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF (P)

↵ ↵

R

R

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF (P)

↵ ↵

R

R

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF (P)

↵ ↵

R

R

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF (P)

w

0

s

0

↵ ↵

R

R

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF (P)

w

0

s

0

w

↵ ↵

R

R

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF (P)

w

0

s

0

w s

↵ ↵

R

R

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF (P)

w

0

s

0

w s

↵ ↵

R

R

We have implemented our semantics in K,

which is an executable semantics framework

Available on the mmGo GitHub page
https://github.com/dfava/mmgo

https://github.com/dfava/mmgo

Hypothesis. We can use the semantics for data-race detection

Current goal. To relax model by accounting for read bu↵ers

i.e. branching on values read but not yet “resolved”

Hypothesis. We can use the semantics for data-race detection

Current goal. To relax model by accounting for read bu↵ers

i.e. branching on values read but not yet “resolved”

In summary,

week memory model

operational semantics

channel communication as synchronization primitive

proof of SC-DRF guarantee

pointer to an implementation

Questions?

In summary,

week memory model

operational semantics

channel communication as synchronization primitive

proof of SC-DRF guarantee

pointer to an implementation

Questions?

In summary,

week memory model

operational semantics

channel communication as synchronization primitive

proof of SC-DRF guarantee

pointer to an implementation

Questions?

In summary,

week memory model

operational semantics

channel communication as synchronization primitive

proof of SC-DRF guarantee

pointer to an implementation

Questions?

In summary,

week memory model

operational semantics

channel communication as synchronization primitive

proof of SC-DRF guarantee

pointer to an implementation

Questions?

In summary,

week memory model

operational semantics

channel communication as synchronization primitive

proof of SC-DRF guarantee

pointer to an implementation

Questions?

In summary,

week memory model

operational semantics

channel communication as synchronization primitive

proof of SC-DRF guarantee

pointer to an implementation

Questions?

References

Go memory model (2014). The Go memory model.
https://golang.org/ref/mem.
Version of May 31, 2014, covering Go version 1.9.1

Lamport, L. (1978). Time, clocks, and the ordering of events
in a distributed system.
Communications of the ACM, 21(7):558–565

French, R. Gopher figure by Renee French.
https://blog.golang.org/gopher

https://golang.org/ref/mem

