Operational Semantics of a

Weak Memory Model with
Channel Communication

Daniel S. Fava
Martin Steffen
Volker Stolz

— — —.:>: []

memory channel operational
model communication semantics

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

@ In a single thread case = program order

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

@ In a single thread case = program order

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

@ In a single thread case = program order

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

@ In a single thread case = program order

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

@ In a single thread case = program order

@ Informs how threads interact through shared memory

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

@ In a single thread case = program order

@ Informs how threads interact through shared memory

TO | T1
z 1= 42 |
flag := 1 | load flag
load z | load z

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

@ In a single thread case = program order

@ Informs how threads interact through shared memory

Initially z =0
TO | T1
z i= 42 |
flag := 1 | load flag
load z | load z

What’s a memory model?

A memory model dictates what values can be read from memory
at a given point in the execution

@ In a single thread case = program order

@ Informs how threads interact through shared memory

Initially z =0
TO | T1
z 1= 42 |
flag := 1 | load flag
load z | load z

z =42 flag=1 = z =7

Sequential consistency

Memory as a shared global repository where
operations appear atomic and in program order

Sequential consistency

Memory as a shared global repository where
operations appear atomic and in program order

-+ Simple to reason bout

Initially z =0
TO | T1
z 1= 42 |
flag := 1 I load flag
load z I load z

z =42 flag=1 = z=142

Sequential consistency

Memory as a shared global repository where
operations appear atomic and in program order
-+ Simple to reason bout
- Does not reflect modern hardware

- Restricts compiler optimizations

Initially z =0
TO | T1
z 1= 42 |
flag := 1 I load flag
load z I load z

z =42 flag=1 = z=42

Weak memory

Ha

Weak memory

@ Relaxations to the order of memory operations

DHa

Weak memory

@ Relaxations to the order of memory operations

@ Motivated by efficiency (synchronize only when needed)

Weak memory

@ Relaxations to the order of memory operations
@ Motivated by efficiency (synchronize only when needed)

@ Cognitive burden placed on the programmer

Weak memory

@ Relaxations to the order of memory operations
@ Motivated by efficiency (synchronize only when needed)

@ Cognitive burden placed on the programmer

Initially z =0
TO | T1
z 1= 42 |
flag := 1 | load flag
load z | load z

z =42 flag=1 = z € {0,42}

@ Memory models often focus on locks, barriers, semaphores
as synchronization primitives

@ Their formalization is often axiomatic

@ Memory models often focus on locks, barriers, semaphores
as synchronization primitives

@ Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

@ Memory models often focus on locks, barriers, semaphores
as synchronization primitives

@ Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally

@ Memory models often focus on locks, barriers, semaphores
as synchronization primitives

@ Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally (intuitive)

@ Memory models often focus on locks, barriers, semaphores
as synchronization primitives

@ Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally, and focusing on (intuitive)

channel communication for synchronization

@ Memory models often focus on locks, barriers, semaphores
as synchronization primitives

@ Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally, and focusing on (intuitive)

channel communication for synchronization (novel)

@ Memory models often focus on locks, barriers, semaphores
as synchronization primitives

@ Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally, and focusing on (intuitive)

channel communication for synchronization (novel)

We took inspiration from the Go language

Models often described from a hardware-centric perspective

e Write buffers, caches, (pipeline) flushes, etc.

Models often described from a hardware-centric perspective

e Write buffers, caches, (pipeline) flushes, etc.

We took a “software” perspective

Models often described from a hardware-centric perspective

e Write buffers, caches, (pipeline) flushes, etc.

We took a “software” perspective

@ focus on reasoning about program behavior

Models often described from a hardware-centric perspective

e Write buffers, caches, (pipeline) flushes, etc.

We took a “software” perspective
@ focus on reasoning about program behavior

@ account for hardware and compiler implementations

Models often described from a hardware-centric perspective

e Write buffers, caches, (pipeline) flushes, etc.

We took a “software” perspective
@ focus on reasoning about program behavior
@ account for hardware and compiler implementations

@ but not concerned with being “implementable”

Models often described from a hardware-centric perspective

e Write buffers, caches, (pipeline) flushes, etc.

We took a “software” perspective
@ focus on reasoning about program behavior
@ account for hardware and compiler implementations

@ but not concerned with being “implementable”

Freed us to think about a (potentially) simpler model

<

o

«F

o>

e Within a single thread,

e reads and writes must behave as if
they executed in the order specified by the program;

4

replace thread by goroutine
[Go memory model, 2014]

e Within a single thread,

e reads and writes must behave as if
they executed in the order specified by the program;

e reorder is allowed only when
it does not change the behavior within that thread.

4

replace thread by goroutine
[Go memory model, 2014]

e Within a single thread,

e reads and writes must behave as if
they executed in the order specified by the program;

e reorder is allowed only when
it does not change the behavior within that thread.

@ The execution order observed by one thread
may differ from the order observed by another.

4

replace thread by goroutine
[Go memory model, 2014]

Order and Observability

e Within a single thread,

e reads and writes must behave as if
they executed in the order specified by the program;

e reorder is allowed only when
it does not change the behavior within that thread.

@ The execution order observed by one thread
may differ from the order observed by another.

4

replace thread by goroutine
[Go memory model, 2014]

Order

Ha ppens—before re|ati0n [Lamport, 1978]

A relation on events. e —hp €

Order

Ha ppens—before re|ati0n [Lamport, 1978]

A relation on events. e —hp €

Order

Ha ppens—before re|ati0n [Lamport, 1978]

A relation on events. e —hp €

TO
z := 42 (A)
flag := 1 (B

Order

Happens-before relation [Lamport, 1978]

A relation on events. e —hp €

TO
z := 42 (A)
flag := 1 (B

A—wp B

Order

Happens-before relation [Lamport, 1978]

A relation on events. e —hp €
TO | T1
z := 42 (A) I load flag
flag := 1 (B) | load z

A—wp B

Order

Happens-before relation [Lamport, 1978]

A relation on events. e —hp €
TO | T1
z := 42 (A) | load flag (C)
flag := 1 (B) | load z (D)

A—wp B

Order

Happens-before relation [Lamport, 1978]

A relation on events. e —hp €
TO | T1
z := 42 (A) | load flag (C)
flag := 1 (B) | load z (D)

A—wp B C—mw D

Order

Happens-before relation [Lamport, 1978]

A relation on events. e —hp €
TO | T1
z := 42 (A) | load flag (C)
flag := 1 (B) | load z (D)
A—wp B C—mw D
°

Order

Happens-before relation [Lamport, 1978]

A relation on events. e —hp €
TO | T1
z := 42 (A) | load flag (C)
flag := 1 (B) | load z (D)
A—wp B C—mw D

@ Just because A —p, B, it does not mean A occurred before B

Order

Happens-before relation [Lamport, 1978]

A relation on events. e —hp €
TO | T1
z := 42 (A) | load flag (C)
flag := 1 (B) | load z (D)
A—wp B C—mw D

@ Just because A —p, B, it does not mean A occurred before B

@ Just because B occurred before C, it does not mean B —p, C

Order

Happens-before relation [Lamport, 1978]

A relation on events. e —hp €
TO | T1
z := 42 (A) | load flag (C)
flag := 1 (B) | load z (D)
A—wp B C—mw D

@ Just because A —p, B, it does not mean A occurred before B

@ Just because B occurred before C, it does not mean B —p, C

No ordering between events of different threads
A—-pBAC—=wpD # A—mD

Observability

Ha

Observability

Observability is defined negatively

Observability
Observability is defined negatively
A read r of variable z can observe a write w also to z unless:

@ r —hp W O W —hp W —hp
for some write w’ to z

[Go memory model, 2014]

Observability
Observability is defined negatively
A read r of variable z can observe a write w also to z unless:

@ r —hp W O W —hp W —hp
for some write w’ to z

[Go memory model, 2014]

load z
z = 42

Observability
Observability is defined negatively
A read r of variable z can observe a write w also to z unless:

@ r —hp W O W —hp W —hp
for some write w’ to z

[Go memory model, 2014]

load z @9
z := 42 (B)

A—p B

Observability
Observability is defined negatively

A read r of variable z can observe a write w also to z unless:
@ r —hp W O W —hp W —hp
for some write w’ to z

[Go memory model, 2014]

T T’
load z A z =1
z := 42 (B) z =2

load z
A—p B

Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

@ r —hp W O W —hp W —hp 1
for some write w’ to z
[Go memory model, 2014]
T T’
load z @9) z =1 (A)
z := 42 (B) z :=2 (B?)
load z (C’)
A —hb B

A’ —-p B’ =4 C?

Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

@ r —hp W O W —hp W —hp 1
for some write w’ to z
[Go memory model, 2014]
T T’
load z @9) z =1 (A)
z := 42 (B) z :=2 (B?)
load z (C’)
A —hb B

A’ —-p B’ =4 C?

B’ shadows A’

Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

@ r —hp W O W —hp W —hp 1
for some write w’ to z
[Go memory model, 2014]
T T’
load z @9) z =1 (A)
z := 42 (B) z :=2 (B?)
load z (C’)
A —hb B

A’ —-p B’ =4 C?
B’ shadows A’

relative to a thread

Our model

Ha

Our model

Memory is a set of write events m(z:=v)

o>

Our model

Memory is a set of write events m(z:=v)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

Our model

Memory is a set of write events m(z:=v)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:

Our model
Memory is a set of write events m(z:=v)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

Our model
Memory is a set of write events m(z:=v)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:

Our model
Memory is a set of write events m(z:=v)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:
recording the write as having happened in the past

Our model
Memory is a set of write events m(z:=v)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:
recording the write as having happened in the past

recording writes that became un-observable

READ

p(o,let r = load z in t)

READ

p(o,let r = load z in t) | m(z:=v)

READ

p(o,let r = load z in t) | m(z:=v)
= p(o,let r=vint) || mz:=v)

o= (-Es) m ¢ E

READ
p(o,let r = load z in t) | m(z:=v)
= p(o,let r=vint) || mz:=v)

plo,z:

v;t)

WRITE

plo,z:

v;t)

= plo’,t) [| m(z:=v)

WRITE

fresh(m)

WRITE

fresh(m)

WRITE

o= (Ehb7 Es) o' = (Ehb + (m,z), Es + Ehb(Z)) fresh(m)
WRITE

plo,z:=v;t) = p(,t)| m(z=v)

<

o

«F

o>

Synchronization

Motivating example

Producer | Consumer
z := 42 (A) | while (flag !'= 1) {} (C)
flag := 1 (B) | load z D

A —pp B C—mw D

Producer | Consumer

z := 42 (h) | while (flag !'= 1) {}
flag := 1 (B) | load z
A —pp B C—mwp D

B—w C
7

©
D

Producer | Consumer

z := 42 (h) | while (flag !'= 1) {}
flag := 1 (B) | load z
A—m B C—w D
B—w C
?

Synchronization via channel communication

©
D

Producer | Consumer

1= 42 (p) | while (flag '= 1) {} (©)
(B) | load z (D)
A —pp B C—mwp D
B—w C
?

Synchronization via channel communication

Producer | Consumer

1= 42 (p) | while (flag '= 1) {} (©)
<- 0 (B) | load z (D)
A —pp B C—mwp D
B—w C
?

Synchronization via channel communication

Producer | Consumer

:= 42 (A) | ©
<- 0 (B) | load z (D)
A —pp B C—mwp D
B—w C
?

Synchronization via channel communication

Producer | Consumer

= 42 (p) | <- ¢ ©)
<- 0 (B) | load z (D)
A —pp B C—mwp D
B—w C
?

Synchronization via channel communication

Producer | Consumer

:= 42 (h) | <-c¢ (9
<- 0 (B | load z (D)
A —pp B C—mwp D
B—=wC

Synchronization via channel communication

Producer | Consumer

:= 42 (h) | <-c¢ (9
<- 0 (B | load z (D)
A —pp B C—mwp D
B—=wC

Synchronization via channel communication

A—wD

SEND

plo,c<+v;t) | clq]

SEND

plo,c <+ v;t) | clq =
plo’,t) | cl(v,o) :: q]

—closed(c[qz]) o =c+d"

colgr 20"l ployc+vit)y | clg] = SEND
chlaq1] || plo’,t) | cl(v,o) = o]

REC

p(o,let r=+cint) | cl[g: (v,0")]

a_/ =0 + O_//
REC

plo,let r=<cint) | c[g:(v,0")] =
p(c’,let r=vint) | c[q]

v#£ 1 o' =0+d"
REC

claa] || plo,let r=<«cint) | c[g::(v,0")] =
cloqi] |l pl{o’,letr=vint) | c[qo]

We have seen so far,

Ha

We have seen so far,

Operational semantics of a weak memory model with channels

We have seen so far,

Operational semantics of a weak memory model with channels

@ Memory is a set of write events
as opposed to a mapping of variables to values

We have seen so far,

Operational semantics of a weak memory model with channels

@ Memory is a set of write events
as opposed to a mapping of variables to values

@ Writes become observable globally and immediately

We have seen so far,

Operational semantics of a weak memory model with channels

@ Memory is a set of write events
as opposed to a mapping of variables to values

o Writes become observable globally and immediately
@ Order (HB) and observability (shadowing)

We have seen so far,

Operational semantics of a weak memory model with channels

@ Memory is a set of write events
as opposed to a mapping of variables to values

o Writes become observable globally and immediately
@ Order (HB) and observability (shadowing)

e is thread local

We have seen so far,

Operational semantics of a weak memory model with channels

@ Memory is a set of write events

as opposed to a mapping of variables to values
@ Writes become observable globally and immediately
@ Order (HB) and observability (shadowing)

e is thread local
e and travels on channels, implicitly

We have seen so far,

Operational semantics of a weak memory model with channels

@ Memory is a set of write events
as opposed to a mapping of variables to values

@ Writes become observable globally and immediately
@ Order (HB) and observability (shadowing)

e is thread local
e and travels on channels, implicitly

Synchronization as restriction on observability

Correctness

Relating the weak model to a sequentially consistent model

wo

wo

wo

wo

S0

wo

S0

|

A property desired of weak memory models

wo S0

A property desired of weak memory models

Sequentially consistent data-race free (SC-DRF) guarantee

wo S0

A property desired of weak memory models
Sequentially consistent data-race free (SC-DRF) guarantee

@ Allows programmers to think in terms of strong memory
@ Write it once, run it everywhere
e provided program is DRF and memory models are SC-DRF

P

wo S0

A property desired of weak memory models
Sequentially consistent data-race free (SC-DRF) guarantee

@ Allows programmers to think in terms of strong memory
@ Write it once, run it everywhere
e provided program is DRF and memory models are SC-DRF

DRF(P)

Wo S0

A property desired of weak memory models
Sequentially consistent data-race free (SC-DRF) guarantee

@ Allows programmers to think in terms of strong memory
@ Write it once, run it everywhere
e provided program is DRF and memory models are SC-DRF

DRF(P)

Wo S0

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF(P)

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF(P)

wo R S0

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF(P)

wo R S0

|

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF(P)

We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF(P)

We have implemented our semantics in K,
which is an executable semantics framework

Available on the mmGo GitHub page
https://github.com/dfava/mmgo

https://github.com/dfava/mmgo

Hypothesis. We can use the semantics for data-race detection

o>

Hypothesis. We can use the semantics for data-race detection

Current goal. To relax model by accounting for read buffers

i.e. branching on values read but not yet “resolved”

o>

In summary,

Ha

In summary,

@ week memory model

In summary,

@ week memory model

@ operational semantics

In summary,

@ week memory model

@ operational semantics
@ channel communication as synchronization primitive

In summary,

@ week memory model
@ operational semantics
@ channel communication as synchronization primitive

@ proof of SC-DRF guarantee

In summary,

@ week memory model

@ operational semantics

@ channel communication as synchronization primitive
@ proof of SC-DRF guarantee

@ pointer to an implementation

In summary,

@ week memory model

@ operational semantics

@ channel communication as synchronization primitive
@ proof of SC-DRF guarantee

@ pointer to an implementation

Questions?

References

e Go memory model (2014). The Go memory model.
https://golang.org/ref/mem.
Version of May 31, 2014, covering Go version 1.9.1

e Lamport, L. (1978). Time, clocks, and the ordering of events
in a distributed system.
Communications of the ACM, 21(7):558-565

@ French, R. Gopher figure by Renee French.
https://blog.golang.org/gopher

https://golang.org/ref/mem

