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@ Informs how threads interact through shared memory

Initially z =0
TO | T1
z 1= 42 |
flag := 1 | load flag
load z | load z

z =42 flag=1 = z =7
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Sequential consistency

Memory as a shared global repository where
operations appear atomic and in program order
-+ Simple to reason bout
- Does not reflect modern hardware

- Restricts compiler optimizations

Initially z =0
TO | T1
z 1= 42 |
flag := 1 I load flag
load z I load z

z =42 flag=1 = z=42
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Weak memory

@ Relaxations to the order of memory operations
@ Motivated by efficiency (synchronize only when needed)

@ Cognitive burden placed on the programmer

Initially z =0
TO | T1
z 1= 42 |
flag := 1 | load flag
load z | load z

z =42 flag=1 = z € {0,42}
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@ Memory models often focus on locks, barriers, semaphores
as synchronization primitives

@ Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally, and focusing on (intuitive)

channel communication for synchronization (novel)

We took inspiration from the Go language
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Models often described from a hardware-centric perspective

e Write buffers, caches, (pipeline) flushes, etc.

We took a “software” perspective
@ focus on reasoning about program behavior
@ account for hardware and compiler implementations

@ but not concerned with being “implementable”

Freed us to think about a (potentially) simpler model
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Order and Observability

e Within a single thread,

e reads and writes must behave as if
they executed in the order specified by the program;

e reorder is allowed only when
it does not change the behavior within that thread.

@ The execution order observed by one thread
may differ from the order observed by another.

4

replace thread by goroutine
[Go memory model, 2014]
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Order

Happens-before relation  [Lamport, 1978]

A relation on events. e —hp €
TO | T1
z := 42 (A) |  load flag (C)
flag := 1 (B) |  load z (D)
A—wp B C—mw D

@ Just because A —p, B, it does not mean A occurred before B

@ Just because B occurred before C, it does not mean B —p, C

No ordering between events of different threads
A—-pBAC—=wpD # A—mD
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T T’
load z A z =1
z := 42 (B) z =2

load z
A—p B
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Observability

Observability is defined negatively

A read r of variable z can observe a write w also to z unless:

@ r —hp W O W —hp W —hp 1
for some write w’ to z
[Go memory model, 2014]
T T’
load z @9) z =1 (A)
z := 42 (B) z :=2 (B?)
load z (C’)
A —hb B

A’ —-p B’ =4 C?
B’ shadows A’

relative to a thread
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Our model
Memory is a set of write events m(z:=v)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:
recording the write as having happened in the past

recording writes that became un-observable
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o= (-Es) m ¢ E

READ
p(o,let r = load z in t) | m(z:=v)
= p(o,let r=vint) || mz:=v)
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v;t)

= plo’,t) [| m(z:=v)

WRITE



fresh(m)

WRITE



fresh(m)

WRITE



o= (Ehb7 Es) o' = (Ehb + (m,z), Es + Ehb(Z)) fresh(m)
WRITE

plo,z:=v;t) = p(,t)| m(z=v)
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Producer | Consumer

:= 42 (h) | <-c¢ (9
<- 0 (B | load z (D)
A —pp B C—mwp D
B—=wC

Synchronization via channel communication

A—wD



SEND
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SEND

plo,c <+ v;t) | clq =
plo’,t) | cl(v,o) :: q]



—closed(c[qz]) o =c+d"

colgr 20"l ployc+vit)y | clg] = SEND
chlaq1] || plo’,t) | cl(v,o) = o]



REC

p(o,let r=+cint) | cl[g: (v,0")]



a_/ =0 + O_//
REC

plo,let r=<cint) | c[g:(v,0")] =
p(c’,let r=vint) | c[q]



v#£ 1 o' =0+d"
REC

claa] || plo,let r=<«cint) | c[g::(v,0")] =
cloqi] |l pl{o’,letr=vint) | c[qo]
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We have seen so far,

Operational semantics of a weak memory model with channels

@ Memory is a set of write events
as opposed to a mapping of variables to values

@ Writes become observable globally and immediately
@ Order (HB) and observability (shadowing)

e is thread local
e and travels on channels, implicitly

Synchronization as restriction on observability



Correctness

Relating the weak model to a sequentially consistent model
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We prove a desired property of the model

Sequentially consistent data-race free (SC-DRF) guarantee

Proof of conditional simulation

DRF(P)




We have implemented our semantics in K,
which is an executable semantics framework

Available on the mmGo GitHub page
https://github.com/dfava/mmgo


https://github.com/dfava/mmgo
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Hypothesis. We can use the semantics for data-race detection

Current goal. To relax model by accounting for read buffers

i.e. branching on values read but not yet “resolved”

o>
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In summary,

@ week memory model

@ operational semantics

@ channel communication as synchronization primitive
@ proof of SC-DRF guarantee

@ pointer to an implementation

Questions?
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