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Memory models often focus on locks, barriers, semaphores
as synchronization primitives

Their formalization is often axiomatic

Our motivation is to formalize a weak memory model

operationally, and focusing on (intuitive)

channel communication for synchronization (novel)

We took inspiration from the Go language
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Models often described from a hardware-centric perspective

Write bu↵ers, caches, (pipeline) flushes, etc.

We took a “software” perspective

focus on reasoning about program behavior

account for hardware and compiler implementations

but not concerned with being “implementable”

Freed us to think about a (potentially) simpler model
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Order and Observability

Within a single thread,

reads and writes must behave as if

they executed in the order specified by the program;

reorder is allowed only when

it does not change the behavior within that thread.

The execution order observed by one thread

may di↵er from the order observed by another.

replace thread by goroutine

[Go memory model, 2014]
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Memory is a set of write events m(|z :=v |)

Each thread keeps track of:
events in its past (happened-before set)

un-observable events (shadowed set)

When a thread reads from memory:
read any write event that is not in its shadowed set

When a thread writes to memory it update its local state:
recording the write as having happened in the past

recording writes that became un-observable
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We have seen so far,
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Correctness

Relating the weak model to a sequentially consistent model
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We have implemented our semantics in K,

which is an executable semantics framework

Available on the mmGo GitHub page
https://github.com/dfava/mmgo

https://github.com/dfava/mmgo
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