
Finding and fixing a mismatch between the
Go memory model and data-race detector.

A story on applied formal methods

Daniel Schnetzer Fava
danielsf@ifi.uio.no

Dept. of Informatics, University of Oslo

Abstract. Go is an open-source programming language developed at
Google. In previous works, we presented formalizations for a weak mem-
ory model and a data-race detector inspired by the Go specification. In
this paper, we describe how our theoretical research guided us in the
process of finding and fixing a concrete bug in the language. Specifically,
we discovered and fixed a discrepancy between the Go memory model
and the Go data-race detector implementation—the discrepancy led to
the under-reporting of data races in Go programs. Here, we share our ex-
perience applying formal methods on software that powers infrastructure
used by millions of people.

1 Introduction

Go is an open-source programming language designed for concurrency. Devel-
oped at Google, the language has gained traction in the areas of cloud com-
puting [6], where it is used to implement various client-server applications and
container management systems, such as Docker [12] and Kubernetes [2].

One of the language’s main features are light-weight threads, called gorou-
tines, which are spawned during function invocation. Any function can be made
to execute asynchronously by simply prepending the keyword go to the function’s
name during invocation. Go’s approach to synchronization also stands out. Do
not communicate by sharing memory; instead, share memory by communicat-
ing [8]—is a catchphrase among Go programmers. The language’s feature-mix
encourages a style of programming where (1) variables are implicitly owned
by goroutines, and (2) variables are shared when this ownership is transferred
through direct communication. So, in contrast to locks, which favor synchroniza-
tion via mutual exclusion, Go has channels, which typically enforce a happens-
before relation [10] between a message sender and its receiver.

The discipline prescribed by Go’s share by communicating slogan is not,
however, enforced at compile time.1 It is, therefore, possible for programs to
harbor data races. Since data races often lead to counter intuitive behavior,
1 There are good reasons why a type checker cannot enforce such a discipline without

seriously restricting the language.

mailto:danielsf@ifi.uio.no

the Go programming language comes with a data-race detector built into its
toolchain.

The Go memory model is relaxed and its specification describes the behavior
of well-synchronized programs. In [4], we gave a small-step operational semantics
of a memory model inspired by Go’s. There, we proved the DRF-SC guarantee,
which states that data-race free (DRF) program executions behave sequentially
consistently (SC) under the proposed model. Given the importance of flagging
data races, in [5] we explore the use of our semantics for the sake of data-
race detection. Armed with these formalisms, we turned our attention to Go’s
implementation. With that, we discovered that the Go data-race detector was
not strictly abiding by the rules of the Go memory model specification. This
oversight lead to the under-reporting of data races in Go programs. We then
proposed and implemented a fix in conjunction with the Go community. Here,
we discuss how the theoretical modeling of the language helped us find and
address this issue.

In Sections 2 and 3, we will visit the Go memory model and explore exam-
ples of synchronization via channel communication. Having covered this back-
ground, we discuss how the Go data-race detector is built into the language
(Section 4). In Section 4.1, we show that the detector’s implementation inad-
vertently mismatched rules governing channel communication. We address the
issue in Section 5 and share lessons we learned in Section 6.

2 Synchronization via channel communication

Two concurrent memory accesses constitute a data race if they reference the same
memory location and at least one of the accesses is a write. Data races can be
eliminated through synchronization, that is, the enforcement of an order between
conflicting memory accesses. In Go, synchronization is performed via channel
communication. Go channels assure FIFO communication from a sender to a
receiver sharing the channel’s reference. Channels can be dynamically created
and closed—their type and finite capacity are fixed upon creation.

When attempting to receive from an empty channel, a thread blocks until,
if ever, a value is made available by a sender. A thread also blocks when at-
tempting to send on a channel that is full. According to the Go memory model
specification [7], the following two main rules govern synchronization. Given a
channel c with capacity C:

I. A send on c happens-before the corresponding receive from c completes.
II. The kth receive from c happens-before the (k +C)th send on c completes.

The first rule establishes a causal relationship between a sender and its commu-
nicating partner. In contrast, the second rule establishes a relationship between
a sender and some past receiver, without there being any message transmission
between the two goroutines. Note also that the second rule accounts for channel
capacity: a current sender is able to place a new message because some past
receiver, by taking an older message out, has made space in the channel’s buffer.

Figure 1a is an example of synchronization via rule (I), and Figure 1b is an
example via rule (II). Throughout the paper, we will follow the syntax in [4],
which closely matches Go’s. The term c ← v, with the arrow pointing into c,
stand for the sending of value v over channel c. Let← c, with the arrow pointing
away from c, stand for the reception of a value from the channel. Assuming a
channel of capacity one, Figure 1a is the classic message passing example, while
Figure 1b enforces mutual exclusion.

T0 T1
z := 42 ← c
c← 0 load z

(a) Message passing example.

T0 T1
c← 0 c← 0
z := 42 z := 43
← c ← c

(b) Mutual exclusion example.

Fig. 1: Synchronization via channel communication (channels of capacity one).

In the message passing example, the goroutine T0 writes to a shared variable
z and, by sending a message over a channel, the routine transfers its implicit own-
ership of z. Goroutine T1 blocks until a message is ready to be received. Once a
message has been received, T1 proceeds to load from z. This program is properly
synchronized, which means T1 necessarily loads the value of 42 as opposed to
potentially observing an uninitialized variable value. Using the happens-before
(HB) rules of the Go memory-model specification, we can show that the memory
accesses are properly synchronized as follows:

z := 42 @hb c← 0 via program order (1)
c← 0 @hb ← c via channel rule (I) (2)
← c @hb load z via program order (3)

z := 42 @hb load z via (1), (2), (3) and transitivity of HB.

While Figure 1a and rule (I) account for direct communication, Figure 1b
relies on rule (II) and the use of channels as locks. The example in Figure 1b
involves two threads attempting to write to the same shared variable. Before
writing, a thread sends a message onto a channel. Because the channel has
capacity one, all subsequent attempts to send again will block until the prior
message is received. Therefore, it is not possible for T0 and T1 to execute their
critical sections at the same time. The send is thus analogous to acquiring a lock,
and the receive to releasing the lock. Again, we can use the Go memory model
to reason about this example. Without loss of generality, assume T0 sends its

message first, then

z := 42 @hb ← c by T0 via program order (4)
← c by T0 @hb c← 0 by T1 via channel rule (II) (5)
c← 0 by T1 @hb z := 43 via program order (6)

z := 42 @hb z := 43 via (4), (5), (6) and transitivity.

While mutual exclusion is ensured, we cannot ascertain the final value of z. If
T0 sends a message before T1, then z equals 43; otherwise, z = 42. Note also
that, in this example, rule (I) is obviated by the program order; therefore, the
rule has no synchronization effect here.2

The Go memory model is described plain and succinctly in English [7]. The
word “completes,” present in both rules (I) and (II), can easily be overlooked.
By overlooking the distinction between an operation and its completion, the
Go data-race detector over-synchronizes and, therefore, fails to report certain
races. The bug, which we describe in detail in the next section, is related to
the following question: Is it possible for the detector to account for the mutex
paradigm (Figure 1b) and, at the same time, observe the distinction between a
channel operation and its completion?

3 The Go memory model: Every word counts

The completion of a channel operation, in addition to the operation itself, is an
important part of the Go memory model. In rule (I), it is not the case that a send
happens-before the corresponding receive. Instead, the send happens-before the
completion of the corresponding receive. Similar for rule (II), involving a past
receive and the completion of a current send. To illustrate, consider Figure 2,
where each vertical arrow represents the execution of a thread (flowing from top
to bottom). Both the top and the bottom diagrams depicts consecutive send
sd and receive rv operations on a channel of capacity one—the operations are
indexed as to show their order of execution.

According to the Go memory model, channel operations are related as shown
in Figure 2a. The operations are broken into two halves of a circle: the top is the
operation and the bottom its completion. The arrows in the diagram represent
the happens-before relation—arrows are labeled with the memory-model rule
that justify their existence. According to rule (I), the 0th send happens-before the
completion of the 0th receive—this relation is captured by the arrow starting at
the top half-circle on the far left (sd0) and ending at the bottom half-circle to the
right (completion of rv0). The next arrow establishes the happens-before relation
2 The relation below can be derived by both program-order as well as by rule (I).

Similar for the send and receive operations performed by T1.

c← 0 by T0 @hb ← c by T0

sd0 rv0 sd1 rv1

. . .
sdi rvi

rule 1 rule 2 rule 1 rule 2 rule 1 rule 2

(a) Depiction of rules (I) and (II) on a channel of capacity one.

sd0
rv0

sd1
rv1

· · ·
sdi

rvi
rule 1 rule 2 rule 1 rule 2 rule 1 rule 2

(b) Alternate formulation of rules (I) and (II) with no distinction between an operation
and its completion.

Fig. 2: The Go memory model specification, every word counts.

between receive rv0 and send sd1 according to rule (II), and so forth. Note from
Figure 2a that an operation is related to its immediate predecessor. There is no
chain of happens-before starting from the “distant” past. For example, although
sd0 is related to the completion of rv0, and rv0 is related to the completion of
sd1, it is not the case that sd0 and sd1 are related to each other.

Figure 2b captures an alternative formulation of the happens-before rules (I)
and (II) where the word “completes” is left out. Sends and receives are not split
into the operation and the operation’s completion. Instead, sends and receives
happen-before each other. This formulation leads to a chain starting at the very
first send, and connecting every send and receive operation ever performed onto
the channel. From an application programmer’s perspective, this chain leads to
an accumulation of happens-before information: after interacting with a chan-
nel, a goroutine’s behavior is now dependent, not only on its communicating
partner but, on every thread that has previously interacted with the channel.
From the point of view of data races, this alternate formulation leads to over-
synchronization.

The Go data-race detector’s implementation matches the behavior of Fig-
ure 2b and, therefore, deviates from the Go memory model specification. Note
that the over-synchronization on the part of the detector is not the result of care-
ful deliberation, for example when false-negatives are accepted in exchange for
lower runtime overheads. Rather, the implementation springs from an interpre-
tation of synchronization from the perspective of locks rather than of channels.
As will be discussed in Section 5, addressing this issue not only eliminates false-
negatives but also yields lower runtime overhead.

Listing 1.1: Send.
1 func chansend(c ∗hchan,
2 ep unsafe.Pointer,
3 block bool,
4 callerpc uintptr)
5 bool {
6 ...
7 lock(&c.lock)
8 ...
9 if c.qcount < c.dataqsiz {

10 qp := chanbuf(c, c.sendx)
11 if raceenabled {
12 raceacquire(qp)
13 racerelease (qp)
14 }
15
16 typedmemmove(c.elemtype, qp, ep)
17
18
19 c.sendx++
20 if c.sendx == c.dataqsiz {
21 c.sendx = 0
22 }
23 c.qcount++
24 unlock(&c.lock)
25 return true
26 }
27 ...
28 }

Listing 1.2: Receive.
1func chanrecv(c ∗hchan,
2ep unsafe.Pointer,
3block bool)
4(selected ,
5received bool) {
6...
7lock(&c.lock)
8...
9if c.qcount > 0 {
10qp := chanbuf(c, c.recvx)
11if raceenabled {
12raceacquire(qp)
13racerelease (qp)
14}
15if ep != nil {
16typedmemmove(c.elemtype, ep, qp)
17}
18typedmemclr(c.elemtype, qp)
19c.recvx++
20if c.recvx == c.dataqsiz {
21c.recvx = 0
22}
23c.qcount−−
24unlock(&c.lock)
25return true, true
26}
27...
28}

Fig. 3: Snippets of Go’s send and receive operations from runtime/chan.go.

4 The Go data-race detector

By adding -race to the command line, a Go program can be compiled and run
with data-race detection enabled. The Go data-race detector is based on TSan,
the Thread Sanitizer library [9]. The library is part of the LLVM infrastruc-
ture [11] and was originally designed to find races in C/C++11 applications.

When data-race detection is enabled, each thread becomes associated with an
additional data structure. This data structure keeps track of the operations that
are in happens-before from a thread’s point of view. In most data-race detectors,
including TSan, this data structure is a vector clock (VC) [10]. Vector-clocks of-
fer a compact representation of the relative order of execution between threads.
With this bookkeeping, data-race detectors are able to find synchronization is-
sues in programs—where synchronization means the transfer of happens-before
information between threads.

In the setting of locks, a thread performs an acquire operation in order to
“learn” the happens-before information stored in a lock. By performing a release
operation, a thread deposits its happens-before information onto a lock. In the
setting of channels, we can think of happens-before as being transferred via sends
and receives.

Figure 3 contains snippets from Go’s implementation of the send and receive
operations. Unsurprisingly, Go implements a channel of capacity C as an array

of length C. This array is contained in a struct called hchan. Struct member
sendx is the index where a new message is to be deposited, while recvx is the
index of the next message to be retrieved. Function chanbuf takes a channel
struct and an index—the function returns a pointer to the channel’s array at
the given index. Note from lines 19 to 22 that a channel array is treated as a
circular buffer.

When data-race detection is enabled, each channel array entry becomes as-
sociated with a vector-clock. Also, when detection is enabled, a send operation
(Listing 1.1) generates calls to acquire and release—lines 11 to 14. The acquire
causes the sender to “learn” the happens-before (HB) information associated
with the channel entry at c.sendx. The release causes the thread’s HB infor-
mation to be stored back into that entry.3 The receive operation is similarly
implemented and shown in Listing 1.2.

In light of the implementation described above, we now revisit the message
passing and mutual exclusion examples of Section 2. In the case of message
passing, a thread sends a message onto a channel of capacity one, then another
thread receives this message before accessing a shared resource—see Figure 1a.
According to the data-race detector’s implementation, the channel array entry
at index 0 observes an acquire followed by release on behalf of the sender. Then,
again, a sequence of acquire followed by release on behalf of the receiver. In
effect, the happens-before information of the sender is transferred to the receiver:
specifically, the release by T0 followed by the acquire by T1 places T0’s write
operation in happens-before relation with respect to T1’s read operation. The
message passing example of Figure 1 is thus deemed properly synchronized by
the Go data-race detector.

We can reason about the mutual exclusion example of Figure 1b in simi-
lar terms. A thread sends onto a channel, accesses a shared resource, and then
receives from the channel. With the receive operation, this thread deposits its
happens-before information onto the channel—line 13 of Listing 1.2. The second
thread then acquires this happens-before information when it sends onto the
channel—line 12 of Listing 1.1. Again, the Go data-race detector’s implementa-
tion correctly deems the example as properly synchronized.

4.1 The bug

Although the Go data-race detector behaves correctly on the message-passing
and mutual-exclusion examples, the detector’s implementation does not reflect
the Go memory model specification. The acquire/release sequence performed on
behalf of send and receive operations follows the typical lock usage. Channel

3 In the implementation of the send operation, a message is moved from the sender’s
buffer to a receiver’s buffer ep on line 16. The index c.sendx is incremented in line 19
and the increment wraps around based on the length of the array—lines 20 to 22.
The number of elements in the array is incremented, the lock protecting the channel
is unlocked and the function returns—lines 23 to 25.

programming is, however, different from lock programming. The current imple-
mentation of the detector leads to an accumulation of happens-before informa-
tion associated with channel entries. This monotonic growth of happens-before
information, however, is not prescribed by the Go memory model.

In the example that follows, we illustrate the mismatch between (1) the im-
plementation of the data-race detector and (2) the memory model specification.
We show how this mismatch leads to over-synchronization and the under report-
ing of data races.

T0 T1 T2
c← 0 c← 0 ← c
z := 42 load z
← c

Fig. 4: Example that highlights a mismatch between the Go memory model and
the Go data-race detector implementation. (Capacity of channel c equals one).

Let c in Figure 4 be a channel of capacity one. The example is then a mix of
mutual exclusion and message passing: T0 is using the channel as a lock in an
attempt to protect its access to a shared variable,4 and we can interpret T1 as
using the same channel to communicate with T2.5 Now, consider the interleaving
in which T0 runs to completion, followed by T1, then T2—shown in Trace 7. Is
the write to z by T0 in a race with the read of z by T2?

(c← 0)T 0 (z := 42)T 0 (← c)T 0 (c← 0)T 1 (← c)T 2 (load z)T 2 (7)

The original Go data-race detector does not flag these accesses as racy:6 T0
releases its happens-before (HB) by sending on the channel. This HB is stored
in the vector-clock associated with c’s 0th array entry. The send by T1 performs
an acquire followed by a release, at which point the VC associated with the entry
contains the union of T0’s and T1’s happens-before. Finally, the receive by T2
performs an acquire and a release, causing T2 to learn the happens-before of
T0 and T1. Formally, the data-race detector derives a happens-before relation
between the write and the read as follows:

z := 42 @hb ← c by T0 via program order
← c by T0 @hb c← 0 by T1 release by T0, acquire by T1
c← 0 by T1 @hb ← c by T2 release by T1, acquire by T0
← c by T2 @hb load z via program order

z := 42 @hb load z via transitivity of HB
4 The send operation by T0 is analogous to acquire and the receive to release.
5 Recall that the mutual exclusion and message passing patterns were introduced in

Figure 1 and discussed in Section 2.
6 GitHub issue https://github.com/golang/go/issues/37355

https://github.com/golang/go/issues/37355

According to the Go memory model specification, however, the receive from
c in T0 is not in happens-before relation to the send in T1. Instead, the receive is
in happens-before relation to the completion of the send! Information about the
write to z by thread T0 is transmitted to T1, but this information is only incor-
porated into T1 after the thread has transmitted its message to T2. Therefore,
T2 does not receive T0’s happens-before information. In other words, according
to the Go memory model, there is no chain of happens-before connecting T0
to T2. The trace captured by equation (7) is thus racy, with the race depicted
in Figure 5. Specifically, the race is captured by the absence of a path between
the write to z in T0 and the load of z in T2.

T0 T1 T2

c← 0

z := 42

← c c← 0

← c

load z

po

po

po

rule 1
rule 2

rule 1

Fig. 5: Partial order on events according to the Go memory model. The HB rela-
tion is represented by arrows labeled with the Go memory model rule justifying
the arrow’s existence. The top part of the half-circle corresponds to a channel
operation and the bottom to its completion.

The Go memory model calls for a mix between channel communication as de-
scribed by Lamport [10] and lock programming. Lamport [10] was studying dis-
tributed systems in the absence of shared memory: the shared resources were the
channels themselves, and the absence of races (of channel races) was related to
determinism. In contrast, Go employs channels as a primitive for synchronizing
memory accesses. In Go, some happens-before relations are forged solely between
communicating partners—these relations are derived from rule (I), which is also
present in [10]. Similar to lock programming, some happens-before relations are
the result of an accumulation of effects from past interactions on a channel. This
accumulation occurs when we incorporate rule (II), which is not present in [10].
So, while the language favors a discipline where an implicit notion of variable
ownership is transferred via direct communication, as prescribed by rule (I), by
incorporating rule (II), Go also supports the use of channels as locks.

5 The fix: capturing the semantics of channels

The repair to the Go data-race detector’s deviation from the memory model
specification comes from acknowledging that a primitive, different from acquire
and release, can better fit the semantics of synchronization via channel commu-
nication. We propose the primitive depicted in Figure 6, which we call release-
acquire-exchange or rea. Let Tt be the happens-before information of thread t,
m be the channel entry where a message will be deposited or retrieved, and Cm

be the happens-before information associated with m. The primitive is imple-
mented with a thread releasing onto a place-holder and then acquiring from Cm.
The happens-before in Cm is then overwritten with the HB information from
the place-holder.7 We added this new synchronization primitive into TSan, the
data-race detection library that powers the Go data-race detector. With the new
primitive in place, changes to the Go sources became trivial:8 it involved chang-
ing sequences of acquire/release calls with a call to release-acquire-exchange.

T′
t := Tt tCm C′

m := Tt

(Tt,Cm)⇒rea(t,m) (T′
t,C

′
m)

Fig. 6: Semantics of “release-acquire-exchange,” a new primitive added to TSan.

Given the addition of rea into TSan, let us revisit trace (7). While the orig-
inal implementation of the Go data-race detector did not flag this trace as racy,
the updated version does. Given the detector’s updated implementation, we can
reason about the race as follows. Let TT 0, TT 1, and TT 2 be data-structures
storing happens-before information of threads T0, T1, and T2. Let Cc[0] be the
happens-before associated with the 0th array entry of channel c. We denote the
write event to z as !z and, for simplicity, we represent happens-before infor-
mation as a set of memory events. The race-detector state is then the tuple
[TT 0,TT 1,TT 2,Cc[0]], with initial state [{}, {}, {}, {}]. The data-race detector

7 The place-holder is a variable local to a function in TSan, as opposed to an extra
memory region allocated in Go.

8 Changes in Go https://golang.org/cl/220419 and TSan https://reviews.llvm.
org/D76322

https://golang.org/cl/220419
https://reviews.llvm.org/D76322
https://reviews.llvm.org/D76322

performs the following transitions as the program executes:

TT 0 TT 1 TT 2 Cc[0]

[{}, {}, {}, {}]⇒(c←0)T 0

[{}, {}, {}, {}]⇒(z:=42)T 0 (8)
[{!z}, {}, {}, {}]⇒(←c)T 0 (9)
[{!z}, {}, {}, {!z}]⇒(c←0)T 1 (10)
[{!z}, {!z}, {}, {}]⇒(←c)T 2 (11)
[{!z}, {!z}, {}, {}]⇒(loadz)T 2 (12)

The write to z by T0 places !z into TT 0—transition from equation (8) to (9).
Sends and receives are interpreted according to their formal semantics in Fig-
ure 6. The receive by T0 places the write event into the channel-entry’s happens-
before—equations (9) and (10). The send by T1 places the write event into the
thread’s happens-before and overwrites the channel-entry’s happens-before with
the empty set—equations (10) and (11). The receive by T2 retrieves the empty
happens-before information—equations (11) and (12). Therefore, at the time T2
loads from the shared variable, the write to z by T0 is not in happens-before
with respect to T2. In conclusion, the execution is racy.

Note that the fix to the Go data-race detector does not invalidate the use of
channels as locks. Without loss of generality, let the trace below be an execution
of the mutual exclusion example of Figure 1b.

(c← 0)T 0 (z := 42)T 0 (← c)T 0 (c← 0)T 1 (z := 43)T 1 (← c)T 1 (13)

The detector’s execution, from initial state [TT 0,TT 1,Cc[0]] = [{}, {}, {}], is

TT 0 TT 1 Cc[0]

[{}, {}, {}]⇒(c←0)T 0

[{}, {}, {}]⇒(z:=42)T 0

[{!z}, {}, {}]⇒(←c)T 0

[{!z}, {}, {!z}]⇒(c←0)T 1

[{!z}, {!z}, {}]

Note that the event !z capturing the write by T0 is contained in TT 1 before T1
attempts to write to z. In other words, the writes are ordered by happens-before
and the execution is properly synchronized. Thus, the answer to the question
raised at the end of Section 2, “is it possible to support the use of channels as
locks (as in the mutex example) and still avoid over-synchronization?” is yes.

We implement the new synchronization primitive rea in TSan with one pass,
as opposed to two passes, over the data-structure storing happens-before in-
formation. Therefore, the updated data-race detector implementation provides

better performance than the original sequence of acquire followed by release.
Another consequence of our fix is a potential reduction in the memory footprint
associated with data-race detection. This savings comes from the fact that vector
clocks associated with channel entries no longer observe as large of an accumula-
tion of happens-before information—this point was previously touched upon in
Section 3, Figure 2. We include a short experimental evaluation in Appendix A.

5.1 From small-step operational semantics to rea

The release-acquire-exchange primitive comes from our previous formalizations
of Go channels. It is conceptually useful to distinguish between happens-before
information transmitted on behalf of rule (I) versus (II). In our earlier formaliza-
tion of a memory model inspired by the Go specification [4], a channel c is split
into two: a forward and a backward one. The forward channel cf holds messages
and thread-local information to be transmitted, as prescribed by rule (I), from a
sender to its corresponding receiver. The backward channel cb, which flows from
a prior receiver to a current sender, captures rule (II) of the memory model.9

In [4], threads or goroutines p〈σ, t〉 have a unique identifier p, contain thread-
local information σ, and a term t corresponding to the program under execution.
When it comes to data-race detection, thread-local information σ is composed
of happens-before data. This data could be stored in a vector-clock or, more
simply, it could be a set of read- and write-events that are in happens-before
with respect to the thread. Synchronization, therefore, entails the exchange of
thread-local information σ via channel communication.

¬closed(cf [q2]) σ′ = σ + σ′′

R-Send
cb[q1 :: σ′′] ‖ p〈σ, c← v; t〉 ‖ cf [q2] −→ cb[q1] ‖ p〈σ′, t〉 ‖ cf [(v, σ) :: q2]

v 6= ⊥ σ′ = σ + σ′′

R-Rec
cb[q1] ‖ p〈σ, let r =← c in t〉 ‖ cf [q2 :: (v, σ′′)] −→

cb[σ :: q1] ‖ p〈σ′, let r = v in t〉 ‖ cf [q2]

Fig. 7: Send and receive reduction rules in the calculus of [4].

Configurations consist of the parallel composition of goroutines, memory
events, and channels. The semantics of [4] is operational. We give the reduc-
tion rules for sends and receives in Figure 7—other rules are omitted and can
9 As noted in [5], “the interplay between forward and backward channels can also be

understood as a form of flow control. Entries in the backward channel’s queue are
not values deposited by threads. Instead, [these entries] can be seen as tickets that
grant senders a free slot in the communication channel.”

be found in the original paper. The let-construct in R-Rec is a binder for the
local variable r in a term t. In the case of R-Rec, the let-construct allows t to
refer to the value obtained when receiving from a channel.

According to reduction rule R-Send, when a thread sends a value v, the
thread’s local state σ is placed on the forward channel alongside v. The rule
captures the placement of the message (v, σ) onto the forward channel as follows:
if q2 is the content of the forward channel before transmission, (v, σ) :: q2 are the
contents after. The transmission of σ models rule (I) of the Go memory model: a
receiver who receives (v, σ) will learn about the sender’s actions up to the given
send operation.

Besides transmitting, a sender also learns HB information in accordance to
rule (II). Precisely, the (k + C)th sender obtains, from the backward channel,
thread-local state from the kth receiver. This is captured by the update σ′ =
σ+σ′′ with the state σ′′ coming from the backward channel. Thus, if the contents
of the backward channel were q1 :: σ′′ before the send, the channel is left with
q1 after the send. Note that the update to the sender state occurs on completion
of the send operation: the update “occurs after” the sender has deposited its
message onto the forward channel—concretely, the send transmits the thread
state σ as opposed to the updated thread state σ′.

When receiving, a goroutine obtains a value v as well as a state σ′′ from a
sender. As dictated by rule (I), the receiver updates its state given the corre-
sponding sender state: σ′ = σ + σ′′. The sender also deposits its state onto the
backward channel. Similar to R-Send, the original thread state σ is deposited
as opposed to the updated thread state σ′.

For both reduction rules R-Send and R-Rec, local thread state σ is de-
posited onto a channel as opposed to the update thread state σ′. This discipline
creates a distinction between an operation and its completion. In effect, the re-
duction rules do not cause the over-synchronization observed by the Go data-race
detector.

5.2 Why not acquire and release?

The formalization in [4] speaks of synchronization in terms of channel commu-
nication. Since TSan operates at the level of locks, we might be tempted to im-
plement the reduction rules with acquire and release operations. The reduction
rule R-Send could be implemented with a thread releasing its happens-before
information into the forward queue, and then acquiring happens-before infor-
mation from the backward queue. Similarly, R-Rec can be implemented with a
release to the backward queue, followed by an acquire from the forward queue.

One invariant of the semantics in [4] is that the number of elements in the
forward and backward queues equals the capacity of the channel. Since a thread
must first release its HB into the channel before acquiring from the channel,
there would be more than C entries in the queues while a send or receive is in-
flight. In fact, when using acquire and release operations as primitives, the Go
data-race detector would need to allocate an array of length C + 2 for a channel
of capacity C. Given such an array, sends and receives can be implemented

with acquire/release operations as shown on Listings 1.3 and 1.4. Recall that
c.sendx and c.recvx are the indices into the array where the next message is
to be deposited and retrieved respectively. Recall also that chanbuf returns a
pointer to a channel’s array at a given index.

Listing 1.3: Implementation of send.
1 idx := c.sendx+1
2 if idx == C+2
3 idx = 0
4 qf := chanbuf(c, c.sendx)
5 qb := chanbuf(c, idx)
6 racerelease (qf)
7 raceacquire(qb)

Listing 1.4: Implementation of receive.
1idx := c.recvx−1
2if c.recvx == 0
3idx = C+1
4qf := chanbuf(c, c.recvx)
5qb := chanbuf(c, idx)
6racerelease (qb)
7raceacquire(qf)

Although correct, there are major downsides to the solution of Listings 1.3
and 1.4. First, it requires additional memory allocation. Second, because the
Go runtime expects a channel of capacity C to be implemented with an array of
length C, the solution would require intrusive changes. Third, from a timing per-
spective, in order to implement a single channel operation, the solution performs
two passes over the data-structure storing happens-before information—we want
a solution that performs less passes.

Compared to acquire and release, the release-acquire-exchange primitive re-
quires no additional allocation in Go, involves minimal changes to the Go run-
time, and has lower overhead.

6 Lessons learned

When we started looking at TSan’s source code, our goal was to improve Go’s
data-race detector by expressing synchronization in terms of channels as opposed
to locks [5]. We began reading the source code of Go and TSan in November
2019. In January 2020, we started experimenting by compiling the projects from
source and making modifications in order to gain experience and intuition. This
tinkering lead us to find, in early and mid February, a small Go compiler bug10

and a small performance bug in TSan.11 Shortly after, around late February, we
found the bug described in this paper.

Given our experience formalizing the calculus in [4], we could see similarities
between our reduction rules and the Go implementation.12 The implementations
of send and receive, however, stood out. The bug was thus found by inspection.
We created a test (Figure 4) to showcase what we believed was discrepancy
10 https://github.com/golang/go/issues/37012
11 https://reviews.llvm.org/D74831
12 For example, the closing of channels in both [4] and in Go cause happens-before

information to be deposited onto the channel, regardless of whether the channel is
full.

https://github.com/golang/go/issues/37012
https://reviews.llvm.org/D74831

between the detector and the memory model. From there, we filed an issue on
GitHub and started interacting with the Go community. With this interaction,
which went until May, an initial patch was iteratively improved until being ac-
cepted for future release.

In this section, we collect insights drawn from our experience in both (1)
formalizing aspects of the Go programming language and (2) interacting with
the TSan and Go communities.

Models do not have to be right, they have to be useful. In [4], we de-
veloped a memory model based on the Go specification. Before embarking on
studying the Go source code, we found ourselves at cross-roads. Since our model
is not as relaxed as Go’s, more theoretical research remained to be done. We
pondered whether to continue working on formalizations or whether to investi-
gate how the current model fits the “real world.” Both avenues are interesting to
us. By taking, for now, the second avenue, we learned that models do not have
to be right, they have to be useful. Our memory model formalization in [4] is not
the memory model of Go, but it is close enough to allow us to reason about Go
and its implementation.

Mind the gap. In one hand, we have the concept of a data-race according to the
synchronization rules of the Go memory model specification. The specification
is expressed in English. On the other hand, we have the Go data-race detector
implementation, with thousands of lines of code spawning different projects and
repositories and involving at least three languages (Go, C/C++, and assembly).
These are two ends of a spectrum. Our model was useful, in part, because of
where it sits in this spectrum. When developing the model in [4], we followed
the English text of the Go memory model specification very closely. Our model,
however, is expressed in structural operational semantics—its rules form an exe-
cutable implementation. Our calculus, therefore, forms a bridge between source
code and the specification expressed in natural language.13

Bad news is good news. The effort in formalizing and proving a nontrivial
property of a software system is often high. Before finding the issue described in
this paper, we had been working on formalisms related to Go for over two years.
This high barrier of entrance is both good and bad. It is good, less obviously so,
because it opens opportunities for collaboration between industry and academia.
While industry excels at delivering software, academia can provide artifacts,
such as formalisms and proofs, which are still not as commonly produced in
industry.14

13 Our observation about the representational different between specification and im-
plementation is not new. The idea of bridging specification and implementation has
been tackled by many fronts, for example [1].

14 Because of stigma, the “formal” qualifier has been de-emphasized when disseminating
formal methods in industry [13]. This stance has shifted dramatically [3].

7 Conclusion

The bug described in this paper evaded skilled developers for about six years,
nearly since the data-race detector was bolted onto the Go runtime. In this
paper, we share how formal methods played an integral role in bringing the
issue to light, and giving it closure.

Acknowledgments. I would like to thank Martin Steffen for his feedback on
this manuscript, Dmitry Vyukov for his feedback and guidance on incorporating
the proposed changes into Go and TSan, Keith Randall for rebuilding the TSan
library files that ship with Go, and everyone who gave constructive feedback
during the code review process. I would also like to thank the reviewers for their
comments on this manuscript, and reviewer 2 in particular.

Bibliography

[1] Back, R. and von Wright, J. (1998). Refinement Calculus – A Systematic Introduc-
tion. Graduate Texts in Computer Science. Springer.

[2] Brewer, E. A. (2015). Kubernetes and the path to cloud native. In Ghande-
harizadeh, S., Barahmand, S., Balazinska, M., and Freedman, M. J., editors, Pro-
ceedings of the Sixth ACM Symposium on Cloud Computing, SoCC 2015, Kohala
Coast, Hawaii, USA, August 27-29, 2015, page 167. ACM.

[3] Cook, B. (2018). Formal reasoning about the security of amazon web services. In
Chockler, H. and Weissenbacher, G., editors, Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic Confer-
ence, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981
of Lecture Notes in Computer Science, pages 38–47. Springer.

[4] Fava, D., Steffen, M., and Stolz, V. (2019). Operational semantics of a weak memory
model with channel synchronization. Journal of Logical and Algebraic Methods in
Programming, 103:1 – 30. An extended version of the FM’18 publication with the
same title.

[5] Fava, D. S. and Steffen, M. (2020). Ready, set, Go! Data-race detection and the
Go language. Science of Computer Programming, 195:102473.

[6] Go developer survey (2019). https://blog.golang.org/survey2019-results.
[7] Go memory model (2014). https://golang.org/ref/mem. May 31, covering Go

version 1.9.1.
[8] Go share memory by communicating (2010). The Go blog. https://blog.go-lang.

org/codelab-share.
[9] google.thread.sanitizer (2015). https://github.com/google/sanitizers/wiki/

ThreadSanitizerAlgorithm.
[10] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed

system. Communications of the ACM, 21(7):558–565.
[11] Lattner, C. and Adve, V. (2004). LLVM: A compilation framework for lifelong

program analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004., pages 75–86. IEEE.

[12] Merkel, D. (2014). Docker: lightweight linux containers for consistent development
and deployment. Linux Journal, 2014(239):2.

[13] Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., and Deardeuff, M.
(2015). How Amazon web services uses formal methods. Commun. ACM, 58(4):66–
73.

https://blog.golang.org/survey2019-results
https://golang.org/ref/mem
https://blog.go-lang.org/codelab-share
https://blog.go-lang.org/codelab-share
https://github.com/google/sanitizers/wiki/ThreadSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/ThreadSanitizerAlgorithm

A Memory footprint

Here we illustrate how our fix to the Go data-race detector leads to a smaller
memory foot-print. Consider an in-place parallel sorting algorithm where an
array is recursively split, up to some depth, in approximately half. Each region
of the array is assigned to a thread for sorting. When a thread completes sorting,
it signals its parent. The parent merges, in-place, the consecutive array regions
previously assigned to its children.

0 5M 10M 15M 20M
Instructions executed

0

2K

4K

6K

8K

10K

V
C

en
tr

ie
s

Fig. 8: Number of VC entries associated with channels during the execution of
an in-place parallel sorting algorithm: before (solid line) and after (dashed line)
the introduction of release-acquire-exchange.

We tracked the number of entries in the vector-clocks associated with channel
array entries. Measurements of the number of VC entries were taken multiple
times during the program’s execution. For ease of collecting and plotting the
data, we modified TSan to call out to a reference data-race detector implemented
in Python.1516 Figure 8 shows the number of VC entries before and after the
fix to the data-race detector—meaning, with a race detector that performed an
acquire followed by release versus a race detector that implements the release-
acquire-exchange primitive. The x-axis is the number of instructions executed,
the y-axis is the number of vector-clock entries consumed so far in the execution.
As the program makes progress, more entries accumulate in the vector-clocks
associated with channel entries. This accumulation is much more accentuated
before the fix to the data-race detector. In fact, for this workload, the fix lead to
larger than 30% reduction in the number of VC entries after 12.5M instructions
were executed.

15 https://github.com/dfava/paper.go.mm.drd
16 Because of differences in how vector clocks are allocated and managed, the memory

gains reported by the reference data-race detector may be different from TSan’s.

https://github.com/dfava/paper.go.mm.drd

	Finding and fixing a mismatch between the Go memory model and data-race detector.

