
Operational Semantics of a Weak Memory Model

with Channel Synchronization

Daniel S. Favaa, Martin Steffena, Volker Stolza,b

aDept. of Informatics, University of Oslo
bWestern Norway University of Applied Sciences

Abstract

There exists a multitude of weak memory models supporting various types of

relaxations and synchronization primitives. On one hand, such models must be

lax enough to account for hardware and compiler optimizations; on the other, the

more lax the model, the harder it is to understand and program for. Though the

right balance is up for debate, a memory model should provide what is known as

the SC-DRF guarantee, meaning that data-race free programs behave in a sequen-

tially consistent manner.

We present a weak memory model for a calculus inspired by the Go program-

ming language. Thus, different from previous approaches, we focus on buffered

channel communication as the sole synchronization primitive. Our formalization

is operational, which allows us to prove the SC-DRF guarantee using a standard

simulation technique. Contrasting against an axiomatic semantics, where the no-

tion of a program is abstracted away as a graph with memory events as nodes, we

believe our operational semantics and simulation proof can be clearer and easier

to understand. Finally, we provide a concrete implementation in K, a rewrite-

based executable semantic framework, and derive an interpreter for the proposed

language.

Keywords: operational semantics, weak memory model, data-race freedom

guarantee, channel communication

Email addresses: danielsf@ifi.uio.no (Daniel S. Fava), msteffen@ifi.uio.no

(Martin Steffen), stolz@ifi.uio.no (Volker Stolz)

Preprint submitted to Logical and Algebraic Methods in Programming October 31, 2019



1. Introduction

A memory model dictates which values may be observed when reading from

memory, thereby affecting how concurrent processes communicate through shared

memory. One of the simplest memory models, called sequentially consistent,

stipulates that operations must appear to execute one at a time and in program

order [30]. SC was one of the first formalizations to be proposed and, to this day,

constitutes a baseline for well-behaved memory. However, for efficiency reasons,

modern hardware architectures do not guarantee sequential consistency. SC is

also considered much too strong to serve as the underlying memory semantics of

programming languages; the reason is that sequential consistency prevents many

established compiler optimizations and robs from the compiler writer the chance

to exploit the underlying hardware for efficient parallel execution. The research

community, however, has not been able to agree on exactly what a proper memory

model should offer. Consequently, a bewildering array of weak or relaxed memory

models have been proposed, investigated, and implemented. Different taxonomies

and catalogs of so-called litmus tests, which highlight specific aspects of memory

models, have also been researched [1].

Memory models are often defined axiomatically, meaning via a set of rules

that constrain the order in which memory events are allowed to occur. The can-

didate execution approach falls in this category [7]. The problem with this ap-

proach, however, is that either the model excludes too much “good” behavior

(i.e., behavior that is deemed desirable) or it fails to filter out some “bad” behav-

ior [7]. Out-of-thin-air is a common class of undesired behavior that often plagues

weak memory specifications. Out-of-thin-air are results that can be justified by the

model via circular reasoning but that do not appear in the actual executions of a

program [11]. In light of these difficulties and despite many attempts, there are no

well-accepted comprehensive specification of the C++11 [9, 10] and Java memory

models [6, 33, 40].

More recently, one fundamental principle of relaxed memory has emerged:

no matter how much relaxation is permitted by a memory model, if a program

is data-race free or properly synchronized, then the program must behave in a

sequentially consistent manner [2, 33]. This is known as the SC-DRF guarantee.

SC-DRF allows for a write-it-once run-it-anywhere guarantee, meaning that data-

race-free code behaves equally across memory models that provide the guarantee,

regardless of which relaxations are supported in the underlying model.

We present an operational semantics for a weak memory. Similar to Boudol

and Petri [12], we favor an operational semantics because it allows us to prove the

2



SC-DRF guarantee using a standard simulation technique. The lemmas we build

up in the process of constructing the proof highlight meaningful invariants and

give insight into the workings of the memory model. We think that our formalism

leads to an easier to understand proof of the SC-DRF guarantee when compared to

axiomatic semantics. Our belief is based on the following observation: the notion

of program is preserved in an operational semantics, while in axiomatic semantics,

a program is often abstracted into a graph with nodes as memory events.

Our calculus is inspired by the Go programming language: similar to Go, our

model focuses on channel communication as the main synchronization primitive.

Go’s memory model, however, is described, albeit succinctly and precisely, in

prose [20]. We provide a formal semantics instead.

The main contributions of our work therefore are:

• Few studies focus on channel communication as synchronization primitive

for weak memory. We give an operational theory for a weak memory with

bounded channel communication.

• Using a standard conditional simulation proof, we prove that the proposed

memory upholds the sequential consistency guarantee for data-race free

programs.

• We implement the operational semantics in the K executable semantics

framework [26, 41] and make the source code publicly available [16].

This paper contains additional material compared to the 15 pages of the confer-

ence version [17]. In particular:

• We fill in proofs and additional lemmas omitted from the short version.

Specifically, we provide details of an auxiliary semantics augmented with

read events, needed for an inductive proof of the SC-DRF guarantee.

• We provide a detailed description of the K implementation and walk through

a rewriting rule to give the reader a sense of how the implementation follows

from the operational semantics.

• We add a discussion section illustrating the proposed semantics’s behavior

on litmus tests. Here we revisit concepts from the axiomatic semantics of

memory models in order to highlight similarities and differences between

our semantics and a representative axiomatic semantics.

• We address limitations of the model and give directions for further research.

3



The remaining of the paper is organized as follows. Section 2 presents back-

ground information directly related to the formalization of our memory model.

Sections 3 and 5 provide the syntax and the semantics of the calculus with re-

laxed memory and channel communication. Section 6 establishes the SC-DRF

guarantee. This is done via a simulation proof that relates a standard “strong”

semantics (which guarantees sequential consistency) to the weak semantics. The

proof makes use of an auxiliary semantics detailed in the appendix. Section 7

discusses the implementation of the strong and the weak semantics in K. With

the goal of contrasting and positioning our work at a wider context, Section 8 il-

lustrates the behavior of the proposed memory model on litmus tests. Section 9

addresses the model’s limitations. Sections 10 and 11 conclude with related and

future work.

2. Background

In this section we provide background on the proposed memory model. Its

semantics and properties will be covered more formally in the later sections.

Go’s memory model. The Go language [19, 15] recently gained traction in net-

working applications, web servers, distributed software and the like. It promi-

nently features goroutines, which are asynchronous functions resembling light-

weight threads, and buffered channel communication in the tradition of CSP [22]

(resp. the π-calculus [36]) or Occam [25]. While encouraging message passing

as the prime mechanism for communication and synchronization, threads can still

exchange data via shared variables. Consequently, Go’s specification includes a

memory model which spells out, in precise but informal English, the few rules

governing memory interaction at the language level [20].

Concerning synchronization primitives, the model covers goroutine creation

and destruction, channel communication, locks, and the once-statement. Our se-

mantics will concentrate on thread creation and channel communication because

lock-handling and the once statement are not language primitives but part of the

sync-library. Thread destruction, i.e. termination, comes with no guarantees con-

cerning visibility: it involves no synchronization and thus the semantics does not

treat thread termination in any special way. In that sense, our semantics treats all

of the primitives covered by Go’s memory model specification. As will become

clear in the next sections, our semantics does not, however, relax read events.

Therefore, our memory model is stronger than Go’s. On the plus side, the lack

4



relaxed read events prevents a class of undesirable behavior called out-of-thin-

air [11]. On the negative, this absence comes at the expense of some forms of

compiler optimizations.

Languages like Java and C++ go to great lengths not only to offer the SC-

DRF guarantee, but beyond that, strive to clarify the non-SC behavior of ill-

synchronized programs. It is far from trivial, however, to attribute a “reasonable”

semantics to racy programs. In particular, it is hard to rule out the so called out-of-

thin-air behavior [11] without inadvertently restricting important memory relax-

ations. Intuitively, one can think of out-of-thin-air as a class of behavior that can

be justified via some sort of circular reasoning. However, according to Pichon-

Pharabod and Sewell [39], there is no exact, generally accepted definition for out-

of-thin-air behavior. Doubts have also been cast upon a general style of defining

weak memory models. For instance, Batty et al. [7] point out limitations of the

so-called candidate of execution way of defining weak memory models, whereby

first possible executions are defined by way of ordering constraints, where after-

wards, illegal ones are filtered out. In such formalizations, the distinction between

“good,” i.e. expected behavior, and “bad,” i.e. outlawed behavior, is usually illus-

trated by a list of examples or litmus tests. The problem is that there exist different

programs in the C/C++11-semantics with the same candidate executions, yet their

resulting execution is deemed acceptable for some programs and unacceptable for

others [7]. In contrast, Go’s memory model is rather “laid back.” Its specifica-

tion [20] does not even mention “out-of-thin-air” behavior. In that sense, Go has

a catch-fire semantics, meaning that the behavior of racy programs is not defined.

Happens-before relation and observability. Like Java’s [33, 40], C++11’s [9, 10],

and many other memory models, ours centers around the definition of a happens-

before relation. The concept dates back to 1978 [29] and was introduced in a pure

message-passing setting, i.e., without shared variables.1 The relation is a technical

vehicle for defining the semantics of memory models.

It is important to note that just because an instruction or event is in a happens-

before relation with a second one, it does not necessarily mean that the first in-

struction actually “happens” before the second in the operational semantics. Con-

sider the sequence of assignments x := 1;y := 2 as an example. The first assign-

ment “happens-before” the second as they are in program order, but it does not

mean the first instruction is actually “done” before the second,2 and especially, it

1The relation was called happened-before in the original paper.
2Assuming that x and y are not aliases in the sense that they refer to the same or “overlapping”

5



does not mean that the effect of the two writes become observable in the given

order. For example, a compiler might choose to change the order of the two in-

structions. Alternatively, a processor may rearrange memory instructions so that

their effect may not be visible in program order. Conversely, the fact that two

events happen to occur one after the other in a particular schedule does not imply

that they are in happens-before relationship, as the observed order may have been

coincidental.

To avoid confusion between the technical happens-before relation and our

understanding of what happens when the programs runs, we speak of event e1

“happens-before” e2 in reference to the technical definition (abbreviated e1→hb

e2) as opposed to its natural language interpretation. Also, when speaking about

steps and events in the operational semantics, we avoid talking about something

happening before something else, and rather say that a step or transition “occurs”

in a particular order.

The happens-before relation regulates observability, and it does so very liber-

ally. It allows a read r from a shared variable to possibly observe a particular write

w to said variable unless one of the following two conditions hold:

r→hb w or (1)

w→hb w′→hb r for some other write w′ to the same variable. (2)

There is no memory hierarchy through which write events propagate; there are

no buffers or caches that need to be flushed. Visibility of a write event is en-

abled globally and immediately. The only writes that are not visible are writes

that happen-after a read as detailed in condition (1), and writes w that have been

supplanted or shadowed by a more recent write w′ as detailed in condition (2).

We call the knowledge of a write event as positive information and the knowledge

that a write has been shadowed as negative information.

Although knowledge of write events (i.e. positive information) is available

globally and immediately, we will see next that knowledge of shadowed events,

or negative information, is local. The exchange of this negative information is

what allows for synchronization. For the sake of discussion, let us concentrate on

the following two constituents for the happens-before relation: 1) program order

and 2) the order stemming from channel communication.3 According to the Go

memory locations.
3There are additional conditions in connection with channel creation and thread creation, the

latter basically a generalization of program order; we ignore it in the discussion here.

6



Listing (1)

Failed sync. [20]

1 var a s t r i n g

2 var done bool

3

4 func s e t u p ( ) {
5 a = ” h e l l o , wor ld ”

6 done = t rue

7 }
8

9 func main ( ) {
10 go s e t u p ( )

11 f o r ! done {} / / t r y w a i t

12

13

14 p r i n t ( a )

15 }

Listing (2)

Channel sync. [20]

var a s t r i n g

var c = make ( chan i n t , 2 )

func s e t u p ( ) {
a = ” h e l l o , wor ld ”

c <− 0 / / send

}

func main ( ) {
go s e t u p ( )

<−c / / r e c e i v e

p r i n t ( a )

}

Listing (3)

Sync. via channel capacity

var a s t r i n g

var c = make ( chan i n t , 2 )

func s e t u p ( ) {
a = ” h e l l o , wor ld ”

<−c / / r e c e i v e

}

func main ( ) {
go s e t u p ( )

c <− 1 / / send

c <− 2 / / send

c <− 3 / / send

p r i n t ( a )

}

Figure 1: Synchronization via channel communication

memory model [20], we have the following constraints related to a channel c with

capacity k:

A send on c happens-before the corresponding receive from c completes. (3)

The ith receive from c happens-before the (i+ k)th send on c. (4)

To illustrate how the happens-before and channel communication can be used

when reasoning about program behavior, consider the following example.

Example 2.1 (Synchronization via channel communication) Listing 1 shows the

spawning and asynchronous execution of a setup function, which then runs con-

currently with main. The thread executing setup writes to the shared variable

a, thereby shadowing its initial value from the perspective of setup’s. This

means, after being overwritten by the "hello, world" string, the variable’s ini-

tial value is no longer accessible for that particular thread. The shadowing here

accounts for condition 2. In the setup thread, the write to variable a happens-

before the write to done, as they are in program order. For the same reason, the

read(s) of done happen-before the read of a in the main thread. Without syn-

chronization, the variable accesses are ordered locally per thread but not across

threads. Since neither condition (1) or (2) applies, the main procedure may or may

not observe writes performed by setup. Thus, it is possible for main to observe

the initial value of a as well as its updated value. Such ambiguity in observa-

tion is what allows the writes to a and done performed by setup to potentially

7



appear out-of-order from the main thread’s perspective. This example illustrates

how shadow information (i.e. negative information) is thread-local: only setup

is in a happens-before relation with the write of "hello, world" to a, and only

setup is unable to observe 0.

Replacing the use of done by channel communication properly synchronizes

the two functions (cf. Listing 2). As the receive happens-after the send, an order

is established between events belonging to the two threads. One can think of

the main thread as receiving not only a value but also the knowledge that the

write event to a in setup has taken place. With condition (3), channels implicitly

communicate the happens-before relation from the sender to the receiver. Then,

with condition (2), we can conclude that once the main thread receives a message

from setup, the initial value of a is no longer observable from main’s perspective.

The previous example shows how condition (3) can be used to synchronize a pro-

gram; namely, using the fact that a message carries not only a value but also

happens-before information from a sender to its corresponding receiver. There

exists yet another form of synchronization, formulated in condition (4), which

hinges on a channel’s bounded capacity. This synchronization comes from the

fact that a sender is only allowed to deposit a message into a bounded channel

when the channel is not full. The boundedness of a channel, therefore, relates a

sender to some previous receiver who, by reading from the channel, created an

empty slot onto which the sender can deposit its message. Happens-before infor-

mation, in this case, flows backwards: from some receiver to a later sender.

Example 2.2 (Synchronization via channel capacity) Listing 3 shows a modi-

fication to the synchronization example where, as opposed to sending a message

when the shared variable is modified, the setup thread receives a message. Note

that information flows backwards: the fact that the message is received implicitly

communicates information back to the message’s sender. The sender, in this case

main, uses the limited channel capacity to its advantage: it sends three messages

on a channel of capacity two; the third message can only be successfully deposited

onto the channel once the setup thread receives from the channel (until then the

third send will block). Therefore, the main thread can infer that, when the third

message is sent, the receive at setup has completed, which in turn means that the

shared variable has been initialized.

Note that for synchronous channels, which have capacity zero, conditions (3)

and (4) degenerate: the send and receiving threads participate in the rendezvous

and symmetrically exchange their happens-before information.

8



In summary, the operational semantics captures the following principles:

Immediate positive information: a write is globally observable instantaneously.

Delayed negative information: in contrast, negative information overwriting pre-

viously observable writes is not immediately effective. Referring back to

the example of Figure 1, the fact that setup has overwritten the initial value

of variable a is not immediately available to other threads. Instead, the in-

formation is spread via message passing in the following way:

Causality: information regarding condition (3) travels with data through

channels.

Channel capacity: backward channels are used to account for condition (4).

Local view: Each thread maintains a local view on the happens-before relation-

ship of past write events, i.e. which events are unobservable. Thus, the

semantics does not offer multi-copy atomicity [13].

3. Abstract syntax

The abstract syntax of the calculus is given in Figure 2. Values v can be of

two forms: r is used to denote the value of local variables or registers, while n in

used to denote references or names in general and, in specific, p for processes or

goroutines, m for memory events, and c for channel names. We do not explicitly

list values such as the unit value, booleans, integers, etc. We also omit compound

local expressions like r1 + r2.

Shared variables are denoted by x, z etc, load z represents reading the shared

variable z into the thread, and z := v denotes writing to z. Unlike in the concrete Go

surface syntax, our chosen syntax for reading global variables makes the shared

memory access explicit. Specifically, global variables z, unlike local variables r,

are not expressions on their own. They can be used only in connection with load-

ing from or storing to shared memory. Expressions like x←load z or x← z are

disallowed. Therefore, the languages obeys a form of at-most-once restriction [5],

where each elementary expression contains at most one memory access.

References are dynamically created and are, therefore, part of the run-time

syntax. Run-time syntax is highlighted in the grammar with an underline as in

n. A new channel is created by make (chan T,v), where T represents the type of

values carried by the channel and v a non-negative integer specifying the channel’s

capacity. Sending a value over a channel and receiving a value as input from a

9



channel are written respectively as v1← v2 and← v. After the operation close,

no further values can be sent on the specified channel. Attempting to send values

on a closed channel leads to a panic.

Starting a new asynchronous activity, called goroutine in Go, is done using

the go-keyword. In Go, the go-statement is applied to function calls only. We

omit function calls, asynchronous or otherwise, since they are orthogonal to the

memory model’s formalization. See Steffen [43] for an operational semantics

dealing with goroutines and closures in a purely functional setting, that is, without

shared memory.

The select-statement, here written using the ∑-symbol, consists of a finite set

of branches which are called communication clauses by the Go specification [19].

These branches act as guarded threads. General expressions in Go can serve as

guards. Our calculus, however, imposes the restriction that only communication

statements (i.e., channel sending and receiving) and the default-keyword can

serve as guards. This restriction is in line with the A-normal form representa-

tion [42] and does not impose any actual reduction in expressivity. Both in Go and

in our formalization, at most one branch is guarded by default in each select-

statement. The same channel can be mentioned in more than one guard. “Mixed

choices” [37, 38] are also allowed, meaning that sending- and receiving-guards

can both be used in the same select-statement. We use stop as syntactic sugar for

the empty select statement; it represents a permanently blocked thread, see Fig-

ure 3. The stop-thread is also the only way to syntactically “terminate” a thread,

meaning that it is the only element of t without syntactic sub-terms.

The let-construct let r = e in t combines sequential composition and the use

of scopes for local variables r: after evaluating e, the rest t is evaluated where the

resulting value of e is handed over using r. The let-construct is seen as a binder for

variable r in t. When r does not occur free in t, let then boils down to sequential

composition and, therefore, is replaced by a semicolon; see Figure 3.

4. Strong operational semantics

Before introducing the main contribution of the paper, we discuss a sequen-

tially consistent semantics for the calculus. It is a stripped down version of the

weak one and serves as a stepping stone into the relaxed memory model presented

in Section 5. Secondly, the strong semantics will later be used in the SC-DRF

proof of Section 6, where we establish that the sequentially semantics condition-

ally simulates the weak one. We start by fixing the run-time configurations of a

program before giving the operational rules in Sections 4.2 and 4.3.

10



v ::= r | n values

e ::= t | v | load z | z := v | if v then t else t | go t expressions

| make (chan T,v) | ← v | v← v | close v

g ::= v← v | ← v | default guards

t ::= let r = e in t | ∑i let ri = gi in ti threads

Figure 2: Abstract syntax

e; t ::= let r = e in t when r /∈ fn(t)
stop ::= ∑0

Figure 3: Syntactic sugar

4.1. Configurations

Let X be a set of shared variables such as x, z . . . A run-time configuration is

given by the following syntax:

S ::= p〈t〉 | (|z:=v|) | • | S ‖ S | c[q] | νn P . (5)

where p, m, c, and n are drawn from an infinite set of names or identifiers N. As

mentioned earlier, for readability, we will typically use p, p′1 . . . for goroutines

or processes, c, c1, . . . for channels, and n,n1, . . . for names in general (where the

object being name is of no particular relevance).

Configurations, therefore, consist of the parallel composition of goroutines

p〈t〉 where t is the code to be executed, write events (|z:=v|) where variable z

takes value v, and channels c[q] where q is a queue. The symbols • stands for

the empty configuration. The ν-binder, known from the π-calculus, indicates

dynamic scoping [36].

The strongly consistent semantics is a standard interleaving semantics, which

means that reads and writes immediately interact with a shared global state. Later

we will see that, in the case of the weak semantics, memory events are labeled and

goroutines hold thread-local information.

There is only one goroutine, which we refer to as “main,” at the beginning of

execution. Also, no channels have been created yet and each shared variable in

the program is initialized to a known value. Thus, a initial configuration takes the

following form.

11



Definition 4.1 (Initial configuration) Initially, a strong configuration is of the

form p〈t0〉 ‖ (|z0:=v1|) ‖ . . . ‖ (|zk:=vk|), where z0, . . .zk are all shared variables of

the program and t0 contains no run-time syntax.

The initial configuration evolves according to operational semantic rules. The

rules are given in several stages. We start with local steps, that is, steps not in-

volving shared variables.

4.2. Local steps

The reduction steps are given modulo structural congruence ≡ on configura-

tions. The congruence rules are standard and given in Figure 4. Besides spec-

ifying parallel composition as a binary operator of an Abelian monoid and with

• as neutral element, there are two additional rules dealing with the ν-binders.

They are likewise standard and correspond to the treatment of name creation in

the π-calculus [36].

P1 ‖ P2 ≡ P2 ‖ P1

(P1 ‖ P2) ‖ P3 ≡ P1 ‖ (P2 ‖ P3)
• ‖ P ≡ P

P1 ‖ νn P2 ≡ νn (P1 ‖ P2) if n /∈ fn(P1)
νn1 νn2 P ≡ νn2 νn1 P

Figure 4: Structural congruence

Reduction modulo congruence and other “structural” rules are given in Fig-

ure 5. There are two basic reduction steps  and −→. Local steps  reduce a

thread t without touching shared variables; see Figure 6. Global steps are given in

the next section.

P≡ P1 P1 −→ P2 P2 ≡ P′

P−→ P′

P1 −→ P′1

P1 ‖ P2 −→ P′1 ‖ P2

P−→ P′

νn P−→ νn P′

Figure 5: Congruence and reduction

12



let x = v in t t[v/x] R-RED

let x1 = (let x2 = e in t1) in t2 let x2 = e in (let x1 = t1 in t2) R-LET

if true then t1 else t2 t1 R-COND1

if false then t1 else t2 t2 R-COND2

Figure 6: Operational semantics: Local steps

4.3. Global steps

To differentiate the strong global steps introduced here from the weak global

ones introduce in Section 5, we use a subscript s in the strong semantics rules. For

example R-WRITEs versus R-WRITE.

4.3.1. Reads and writes to shared memory

As mentioned previously, in the sequentially consistent semantics, reads and

writes to memory take effect immediately. Writes simply update the value associ-

ated its corresponding variable, and reads obtained that value; see Figure 7. Since

R-WRITEs
p〈z := v; t〉 ‖ (|z:=v′|)−→ p〈t〉 ‖ (|z:=v|)

R-READs
p〈let r = load z in t〉 ‖ (|z:=v|)−→ p〈let r = v in t〉 ‖ (|z:=v|)

Figure 7: Strong operational semantics: read and write steps

the initial configuration has one write event per shared variable, and since write

events are not created or destroyed by any of the reduction steps, the following is

an invariant of the semantics.

Definition 4.2 (Well-formed strong configuration) An strong configuration S is

well-formed if, for every variable z ∈ Vs, there exists exactly one write event

(|z:=v|) in S. We write ⊢s S : ok for such well-formed configurations.

13



4.3.2. Channel communication

Channels in Go are the primary mechanism for communication and synchro-

nization. They are typed and assure FIFO communication from a sender to a

receiver sharing the channel’s reference. In Go, the type system can be used to

actually distinguish “read-only” and “write-only” usages of channels, i.e. usages

of channels where only receiving (resp. sending) is allowed. Very few restric-

tions are imposed on the types of channels. Data that can be sent over channels

include channels themselves (more precisely references to channels) and closures,

including closures involving higher-order functions. Channels can be dynamically

created and closed. Channels are bounded, i.e., each channel has a finite capacity

fixed upon creation. Channels of capacity 0 are called synchronous.

We largely ignore that channel values are typed and that only values of an

appropriate type can be communicated over a given channel. We also ignore the

distinction between read-only and write-only channels.

q = [σ⊥, . . . ,σ⊥] |q |= v fresh(c)
R-MAKEs

p〈let r = make (chan T,v) in t〉 −→ νc (p〈let r = c in t〉 ‖ c f [] ‖ cb[q])

¬closed(c f [q2])
R-SENDs

cb[q1 :: σ⊥] ‖ p〈c← v; t〉 ‖ c f [q2] −→ cb[q1] ‖ p〈t〉 ‖ c f [v :: q2]

v 6=⊥
R-RECs

cb[q1] ‖ p〈let r =← c in t〉 ‖ c f [q2 :: v] −→

cb[σ⊥ :: q1] ‖ p〈let r = v in t〉 ‖ c f [q2]

R-REC
⊥
s

p〈let r =← c in t〉 ‖ c f [⊥] −→ p〈let r =⊥ in t〉 ‖ c f [⊥]

R-RENDs

cb[] ‖ p1〈c← v; t〉 ‖ p2〈let r =← c in t2〉 ‖ c f [] −→

cb[] ‖ p1〈t〉 ‖ p2〈let r = v in t2〉 ‖ c f []

¬closed(c f [q])
R-CLOSEs

p〈close (c); t〉 ‖ c f [q] −→ p〈t〉 ‖ c f [⊥ :: q]

Figure 8: Strong operational semantics: channel communication

14



In our semantics (see Fig. 8), a channel c is composed of two queues: the

forward queue c f [q] and the backward queue cb[q]. When a channel of capacity

k is created, the forward queue is empty and the backward queue is initialized so

that it contains dummy elements σ⊥ (cf. rule R-MAKEs). The dummy elements

represent the number of empty or free slots in the channel. Upon creation, the

number of dummy elements equals the capacity of the channel. Values sent on

(resp. received from) a channel are stored in (resp. removed from) the forward

queue; see rule R-SENDs and R-RECs. When a message is sent on (resp. re-

moved from) the channel, the number of dummy elements in the backward queue

is decremented (resp. incremented). Closing a channel resembles sending a spe-

cial end-of-transmission value ⊥; see rule R-CLOSEs.

Starting from an initial weak configuration, the semantics assures the follow-

ing invariant.

Lemma 4.3 (Invariant for channel queues) The following global invariant holds

for a channel c created with capacity k:

|q f |+ |qb |= k when c is open and |q f |+ |qb |= k+1 when closed.

In the case of asynchronous channels, the invariant boils down to q f = qb = [] for

open channels and q f = [⊥] and qb = [] for closed ones. ⊓⊔

Channels can be closed, after which no new values can be sent otherwise a

panic ensues (panics are a form of exception in Go). Values “on transit” in a chan-

nel when it is being closed are not discarded and can be received as normal. Note

that a close operation takes immediate effect regardless of whether the channel is

full or not. After the last sent value has been received from a closed channel, it is

still possible to receive “further values.” As opposed to blocking, a receive on a

closed channel returns the default value of the type T , where T is the type passed

to make when creating the channel. Note that in Go, each type has a well-defined

default value. In order to help the receiver disambiguate between 1) receiving a

default value on a closed channel and 2) receiving a properly communicated value

on a non-closed channel, Go offers the possibility to check whether a channel is

closed by using so-called special forms of assignment. Performing this check is a

good defensive programming pattern, although it is not enforced in Go. Instead of

using this “in-band signaling” of default values and special forms of assignments,

we use a special value ⊥ designating end-of-transmission. Once a channel is

closed and the “value“ ⊥ is placed in the forward queue, it can be no longer be

removed. Therefore, clients attempting to receive from the closed channel receive

15



the ⊥ marker. Note that a difference exists between an empty open channel c[]
and an empty closed one c[⊥]. Note that the value ⊥ is pertinent to the forward

channel only.

4.3.3. Thread creation and select statement

The thread creation rule, presented in Figure 9, is unsurprising: the newly

spawned thread executes the code t ′ passed to the corresponding go statement.

fresh(p2)
R-GOs

p1〈go t ′; t〉 −→ ν p2 (p1〈t〉 ‖ p2〈t
′〉)

Figure 9: Strong operational semantics: thread creation

The treatment of select statement is identical in the strong and the weak se-

mantics. We therefore postpone the discussion on select until Section 5.3.4.

4.4. Example

Before concluding the sequentially consistent memory model’s exposition, we

walk through the execution of a program and illustrate the application of many of

the derivation rules. As example, we will use the program of Listing 2 translated

to the syntax of the paper (see Listing 4).

Listing 4: Channel synchronization example using the syntax of Section 3

int x;

let c = make(chan int , 2) in

let _ = go { x := 42; c <- 0 } in

let _ = <- c in load x

Figure 10 shows a run of the program; 4 the execution steps are enumerated.

The first three lines are the initial runtime configuration. It shows the shared

4Technically, we have made a small simplification to the program and its execution, which is:

we elided the fact that stop (i.e., the empty select statement) is the only terminal in the grammar.

For ease of exposition, we allow the main thread to end after loading from x and we allow the

setup thread to end after sending 0 on x.

16



variable initialized to 0 and the main thread. In the first step of execution, a

channel of size 2 is created according to rule R-MAKEs: the backward queue

is initialized to σ⊥,σ⊥ and the forward queue is empty. The setup function, here

called ps, is spawn in the second execution step via the application of R-GOs.

Since there are no values in the forward queue of channel c, the main thread is

blocked on the receive: let =← c. The only possible reduction then is for the

setup thread to write to the shared variable x, thus modifying x’s associated write

event. This happens with the application of R-WRITEs on execution step 3. In

step 4, the setup thread sends 0 onto the channel: the forward queue is appended

and the backward queue is shortened by one element (see R-SENDs). At this

point ps has run to the end and the main thread is unblocked. Main receives (and

ignores) a value from the channel (rule R-RECs) then loads the content of variable

x (rule R-READs).

(|x:=0|) ‖ p〈let c = make (chan int,2) in

let = go {x := 42; c← 0} in

let = ← c in load x〉

1
−→ c f [] ‖ cb[σ⊥,σ⊥] ‖ (|x:=0|) ‖ p〈let = go {x := 42; c← 0} in

let = ← c in load x〉
2
−→ c f [] ‖ cb[σ⊥,σ⊥] ‖ (|x:=0|) ‖ p〈let = ← c in load x〉 ‖

ps〈x := 42; c← 0〉
3
−→ c f [] ‖ cb[σ⊥,σ⊥] ‖ (|x:=42|) ‖ p〈let = ← c in load x〉 ‖ ps〈c← 0〉
4
−→ c f [0] ‖ cb[σ⊥] ‖ (|x:=42|) ‖ p〈let = ← c in load x〉 ‖ ps〈〉
5
−→ c f [] ‖ cb[σ⊥,σ⊥] ‖ (|x:=42|) ‖ p〈let = 0 in load x〉 ‖ ps〈〉
6
−→ c f [] ‖ cb[σ⊥,σ⊥] ‖ (|x:=42|) ‖ p〈load x〉 ‖ ps〈〉
7
−→ c f [] ‖ cb[σ⊥,σ⊥] ‖ (|x:=42|) ‖ p〈42〉 ‖ ps〈〉

Figure 10: Reduction of a simple program according to the strong operational semantics.

5. Weak operational semantics

In this section we define the operational semantics of the main calculus. We

fix the run-time configurations of a program before giving the operational rules in

Sections 5.2 and 5.3. Besides processes (or goroutines) running concurrently, the

configuration will contain “asynchronous writes” to shared variables.

17



5.1. Local states, events, and configurations

The weak run-time configuration is given by the following syntax:

P ::= p〈σ , t〉 | m(|z:=v|) | c[q] | • | P ‖ P | νn P (6)

Similar to the strong semantics of Section 4, configurations in the weak semantics

consist of the parallel composition of goroutines, write events and channels. Dif-

ferent from the strong semantics, a write event is labeled by a unique identifier,

typically m, m′2 . . . Also different, goroutines p〈σ , t〉 contain, besides the code t to

be executed, a local view σ = (Ehb,Es) detailing the observability of write events

from the perspective of p.

The problem with reasoning about memory writes in the presence of con-

currency is similar to the problem of generalizing the assignment Hoare triple

{Q[e/x]}x := e{Q} to the concurrency setting. What is true after an assignment in

a single thread model may not be true if the assignment takes place along threads

executing concurrently. In particular, interference from other threads may falsify

the post condition Q. One has then to either prove interference freedom or to

weaken the assertion. We choose not the say what the value of a shared variable

is at the end of an assignment. Instead, we keep track of what value it is not. We

call this local negative information since it is kept on a per-thread basis.

In our weak operational semantics, all write events of a given configuration

are observable by default. If there is more than one write event to a variable,

those write events are, by default, observable. So, from a thread’s perspective,

a variable may hold a superposition of values. It is possible for an event to no

longer be visible from a thread’s perspective. For example, say thread p writes

value v to the shared variable z, thus creating the write event m(|z:=v|). All write

events m′ in a happens-before relation with p’s current action become shadowed

from p’s perspective and are no longer observable. In other words, for all m′ such

that m′→hb m, the value associated with m′ is not observable by p. What p can

observe by reading from the shared variable z then is the value of any write event

m′′(|z:=v′′|) where m′′9hb m. This includes the value v that p last wrote to z as

well as the value of any other write event that is concurrent with m.

Shadowed events are tracked in the local state σ , specifically in Es. In order

to properly update the list of shadowed events, the local state must also contain

thread-local information about the “happens-before” relationship between write

events. This information is kept in Ehb. We will see how thread local information

is updated when we introduce the derivation rules of Section 5.3.

18



Definition 5.1 (Local state) A local state σ is a tuple of type 2(N×X)× 2N . We

use the notation (Ehb,Es) to refer to the tuples and abbreviate their type by Σ. Let

us furthermore denote by Ehb(z) the set {m | (m,z) ∈ Ehb}. We write σ⊥ for the

local state ( /0, /0) containing neither happens-before nor shadow information.

For σ = (Ehb,Es) and σ ′ = (E ′hb,E
′
s), we define σ +σ ′ as the pairwise union,

i.e., σ +σ ′ = (Ehb ∪E ′hb,Es ∪E ′s). Also, we use Ehb +(m,z) as a shorthand for

Ehb∪{(m,z))}.

The following holds at the beginning of execution: there is only one goroutine

and no channels have been created yet; each shared variable is initialized to a

known value; the happens-before set of the main thread records the shared vari-

ables’ initialization; and there are no shadowed writes from main’s perspective.

Definition 5.2 (Initial weak configuration) An initial weak configuration is of

the form

ν~m (〈σ0, t0〉 ‖ m0(|z0:=v1|) ‖ . . . ‖ mk(|zk:=vk|))

where z0, . . .zk are all shared variables of the program, ~m represents m0, . . . ,mk,

and σ0 = (E0
hb,E

0
s ) where E0

hb = {(m0,z0), . . . ,(mk,zk)} and E0
s = /0.

The initial weak configuration evolves according to the steps detailed next.

5.2. Local steps

Structural congruence≡ and the local transition steps defined in Section 4.2

are carried unchanged from the strong to the weak semantics (cf. Figures 4, 5, and

6). The only addition is rule R-LOCAL, which “lifts” the local reduction relation

to the global level of configurations.

t1 t2
R-LOCAL

〈σ , t1〉 −→ 〈σ , t2〉

5.3. Global steps

Steps that touch, besides local thread information, shared variables and chan-

nels, are detailed next.

19



5.3.1. Reads and writes to shared memory

Rules R-WRITE and R-READ deal with the two basic interactions of threads

with shared memory: writing a local value into a shared variable and, inversely,

reading a value from a shared variable into the thread-local memory. Writing a

value records the corresponding event m(|z:=v|) in the global configuration, with

m freshly generated, see rule R-WRITE. The write events are remembered with-

out keeping track of the order of their issuance. Therefore, as far as the global

configuration is concerned, no write event ever invalidates an “earlier” write event

or overwrites a previous value in a shared variable. Instead, the global configura-

tion accumulates the “positive” information about all available write events which

potentially can be observed by reading from shared memory. Values which have

never been written cannot be observed, i.e. no out-of-thin-air behavior. Whereas

the global configuration remembers all write events indefinitely, filtering out val-

ues which are no longer observable is handled thread-locally. In other words,

which writes are observable depends on the threads’ local perspective.

The local state σ of a goroutine captures which events are actually observ-

able from a thread-local perspective. Its primary function is to contain “negative”

information: a read can observe all write events except for those shadowed. A

write event is shadowed if its identifier is contained in Es, see rule R-READ. In

addition, the local state keeps track of write events that are thread-locally known

to have happened-before. These events are stored in Ehb. So, issuing a write

command (rule R-WRITE) with a write event labeled m updates the local Ehb by

adding (m,z). Additionally, the execution of a write instruction causes all previous

writes to the variable z (i.e., all writes which are known to have happened-before

according to Ehb) to become shadowed, thus enlarging Es. Later in this section, on

page 24, we look at an example of reads and writes, their effect on the happened-

before and shadow sets, and their impact on a thread’s ability to observe memory

events.

So the global configurations remember writes indefinitely while the overwrit-

ing and thus forgetting previous values is done individually per thread. This, per-

haps counter-intuitively, has the following consequence: if a goroutine reads the

same shared variable repeatedly, observing a certain value once does not imply

that the same value is read next time (even if no new writes are issued to the

shared memory). This is because all subsequent readings of the variable are inde-

pendent and non-deterministically chosen from the set of write events which are

not yet shadowed. This also means the semantics allows for a type of relaxation

referred to in the literature as coRR. The coRR behavior will be illustrated in the

20



example at the end of this Section, on page 24, and will be addressed further in

the Discussion section.

σ = (Ehb,Es) σ ′ = (Ehb +(m,z),Es +Ehb(z)) fresh(m)
R-WRITE

p〈σ ,z := v; t〉 −→ νm (p〈σ ′, t〉 ‖ m(|z:=v|))

σ = ( ,Es) m /∈ Es
R-READ

p〈σ ,let r = load z in t〉 ‖ m(|z:=v|) −→ p〈σ ,let r = v in t〉 ‖ m(|z:=v|)

q = [σ⊥, . . . ,σ⊥] |q |= v fresh(c)
R-MAKE

p〈σ ,let r = make (chan T,v) in t〉 −→ νc (p〈σ ,let r = c in t〉 ‖ c f [] ‖ cb[q])

¬closed(c f [q2]) σ ′ = σ +σ ′′

R-SEND

cb[q1 :: σ ′′] ‖ p〈σ ,c← v; t〉 ‖ c f [q2] −→ cb[q1] ‖ p〈σ ′, t〉 ‖ c f [(v,σ) :: q2]

v 6=⊥ σ ′ = σ +σ ′′

R-REC

cb[q1] ‖ p〈σ ,let r =← c in t〉 ‖ c f [q2 :: (v,σ ′′)] −→

cb[σ :: q1] ‖ p〈σ ′,let r = v in t〉 ‖ c f [q2]

σ ′ = σ +σ ′′

R-REC
⊥

p〈σ ,let r =← c in t〉 ‖ c f [(⊥,σ
′′)] −→ p〈σ ′,let r =⊥ in t〉 ‖ c f [(⊥,σ

′′)]

σ ′ = σ1 +σ2
R-REND

cb[] ‖ p1〈σ1,c← v; t〉 ‖ p2〈σ2,let r =← c in t2〉 ‖ c f [] −→

cb[] ‖ p1〈σ
′, t〉 ‖ p2〈σ

′,let r = v in t2〉 ‖ c f []

¬closed(c f [q])
R-CLOSE

p〈σ ,close (c); t〉 ‖ c f [q] −→ p〈σ , t〉 ‖ c f [(⊥,σ) :: q]

fresh(p2)
R-GO

p1〈σ ,go t ′; t〉 −→ ν p2 (p1〈σ , t〉 ‖ p2〈σ , t ′〉)

Figure 11: Operational semantics: Global steps

As a final remark, note that it is possible for a write event to be shadowed

by all threads in a configuration. A write event that is shadowed by all threads

can never again be observed; it can never service any future reads from memory.

21



Although not included in the semantics, we could add a garbage collection rule

that removes globally shadowed write events from a configuration.

5.3.2. Channel communication

Different from the strong semantics, channel synchronization in the weak se-

mantics must also carry thread-local information. Recall from our discussion of

the Go memory model that there are two conditions that need to be satisfied. Con-

dition 3 states that a send happens-before its corresponding receive. Therefore,

events that are in the sender’s past (at the time a message was sent), will also be in

the receiver’s past when the message is received. In our semantics, this is captured

by not only placing into the channel the value being sent, but also the sender’s lo-

cal state. When a goroutine receives a message, it receives the values sent as

well as the sender’s local state. Information from the sender to its corresponding

receiver flows through what we call the channel’s forward queue.

Condition 4 describes a synchronization effect due to channels’ capacity lim-

itation. In our semantics, the capacity limitation is modeled by having local state

information flowing in the opposite direction, meaning, from a previous receiver

to a later sender. This local state information flows through what we call the back-

ward queue. The backward queue accounts for the fact that a sender is only able

to place an item into a channel when the channel is not full. The channel not being

full means that there must have been a previous receiver who, by receiving and

thus removing an item from the channel, created an empty slot on the channel.

Therefore, this old receiving action can be placed in the past of the current sender.

(There may also be space in the queue because the queue was newly created. As

we will see later, this is taken into account by the R-MAKE rule, which governs

channel creation.)

Thus, in order to account for their synchronization power, channels in our

semantics are composed of two queues. Given that they carry slightly different

information, these queues have different types as detailed next.

Definition 5.3 (Channels) A channel is of the form c[q1,q2], where c is a name

and (q1,q2) a pair of queues. The first queue, q1, is also referred to as the forward

queue. It contains elements of type (Val×Σ)+({⊥}×Σ), where Val is the value

sent on the channel, Σ is the local state of the sender when the message was

placed on the channel, and ⊥ is a distinct, separate value representing the “end-

of-transmission.” The second queue, q2, is referred to as the backward queue. It

contains elements of type Σ and propagate the local state of a past receiver to a

sender.

22



We write (v,σ) and (⊥,σ) for forward queue values and (σ) for the back-

ward queue values. Furthermore, we use the following notational convention: We

write c f [q] to refer to the forward queue of the channel and cb[q] to the back-

ward queue. We also speak of the forward channel and the backward channel. We

write [] for an empty queue, e :: q for a queue with e as the element most recently

added into q, and q :: e for the queue where e is the element to be dequeued next.

We denote with |q | the number of elements in q. A channel is closed, written

closed(c[q]), if q is of the form ⊥ :: q′. Note that it is possible for a non-empty

queue to be closed.

When creating a channel (cf. rule R-MAKE) the forward direction is initially

empty but the backward is initialized to a queue of length v corresponding to

the channel’s capacity. The backward queue contains empty happens-before and

shadow information, represented by the elements σ⊥. The rule R-MAKE covers

both synchronous and asynchronous channels. A synchronous channel is created

with empty forward c f [] and backward queue cb[]. Channel creation does not

involve synchronization.

Rules R-SEND and R-REC govern asynchronous channel communication while

R-REND implements synchronous communication. In an asynchronous send, a

process places a value on the forward channel along with its local state, provided

the channel is not full, meaning: the backward queue is non-empty. In the pro-

cess of sending, the sender’s local state is updated with the knowledge that the

previous kth receive has completed; this update is captured by σ ′ = σ +σ ′′ in the

R-SEND rule. To receive a value from a non-empty asynchronous channel (cf.

rule R-REC), the communicated value v is stored locally in the rule, ultimately

in variable r. Additionally, the local state of the receiver is updated by adding

the previously sent local-state information. Furthermore, the state of the receiver

before the update is sent back via the backward channel.

In synchronous communication, the receiver obtains a value from the sender

and together they exchange local state information. Recall that the Go memory

model specifies a send as happening-before its corresponding receive, and the ith

receive happening-before the (i+k)th send where k is the channel capacity. There-

fore, when a channel is synchronous, k = 0, we have that a send happens-before

its corresponding receive and the receive happens-before the corresponding send.

In other words, synchronous send and receive boil down to a rendezvous between

two goroutines. Note that the R-REND can apply only to open synchronous chan-

nels, which have empty forward c f [] and backward queue cb[]. Also note that the

rules R-SEND and R-REC do not apply to synchronous channels.

23



The R-CLOSE rule closes both sync and async channels. R-SEND and R-REC,

resp. R-REND no longer apply to closed channels. Executing a receive on a closed

channel results in receiving the end-of-transmission marker ⊥ (cf. rule R-REC
⊥)

and updating the local state σ in the same way as when receiving a properly sent

value. This happens regardless of whether the channel is synchronous or not. The

“value” ⊥ is not removed from the queue, so that all clients attempting to receive

from the closed channel obtain the communicated happens-before synchroniza-

tion information. Furthermore, there is no need to communicate happens-before

constraints from the receiver to a potential future sender on the closed channel:

after all, the channel is closed. Consequently the receiver does not propagate back

its local state over the back-channel. Closing a channel resembles sending the

special end-of-transmission value⊥ (cf. rule R-CLOSE). An already closed chan-

nel cannot be closed again. In Go, such an attempt would raise a panic. Here, the

panic is captured by the absence of enabled transitions.

5.3.3. Select statement

Rules dealing with the select statement in the weak semantics are given on Fig-

ure 12. The R-SEL-SEND and R-SEL-REC rules apply to asynchronous channels

and are analogous to R-SEND and R-REC. The R-SEL-SYNC rules apply to open

synchronous channels (i.e. the forward and backward queues are empty). The

R-SEL-REC⊥ is analogous to R-REC⊥. Finally, the default rule (R-SEL-DEF)

applies when no other select rule applies.

5.3.4. Thread creation

Lastly, thread creation leads to a form of a synchronization where the spawned

goroutine inherits the local state of the parent (cf. rule R-GO).

5.4. Example

Before concluding the memory model’s exposition, we revisit the example

from the Background section. What follows next is a highlight the differences

in execution under the weak semantics versus under the strong one presented in

Section 4.4. The example involves a main thread that spawns a setup thread,

setup writes to a shared variable that is later read from main. The two threads

communicate over a shared channel reference. See Listing 4.

The first thing to notice from the run depicted in Figure 13 is that, contrasted

with the sequentially consistent semantics, write events are now labeled, including

the event associated with the initialization of the shared variable x. As we will

see, “knowledge” of these events is stored on a per-thread basis and transmitted

24



gi = c← v ¬closed(c f [q f ]) σ ′ = σ +σ ′′

R-SEL-SEND

cb[qb :: (σ ′′)] ‖ p〈σ ,∑i let ri = gi in ti〉 ‖ c f [q f ] −→

cb[qb] ‖ p〈σ ′, ti[()/ri]〉 ‖ c f [(v,σ)) :: q f ]

gi =← c q f = q′f :: (v,σ ′′) v 6=⊥ q′b = (σ) :: qb σ ′ = σ +σ ′′

R-SEL-REC

cb[qb] ‖ p〈σ ,∑i let ri = gi in ti〉 ‖ c f [q f ] −→

cb[q
′
b] ‖ p〈σ ′,let ri = v in ti〉 ‖ c f [q

′
f ]

gi = c← v σ ′ = σ1 +σ2 cb[] c f []
R-SEL-SYNC1

p1〈σ1,∑i ri = gi in ti〉 ‖ p2〈σ2,let r =← c in t2〉 −→

p1〈σ
′, ti[()/ri]〉 ‖ p2〈σ

′,let r = v in t2〉

gi =← c σ ′ = σ1 +σ2 cb[] c f []
R-SEL-SYNC2

p1〈σ1,c← v; t1〉 ‖ p2〈σ2,∑i let ri = gi in ti〉 −→

p1〈σ
′, t1〉 ‖ p2〈σ

′,let ri = v in ti〉

gi = c← v g j =← c σ ′ = σ1 +σ2 cb[] c f []
R-SEL-SYNC3

p1〈σ1,∑i let ri = gi in ti〉 ‖ p2〈σ2,∑ j let r j = g j in t j〉 −→

p1〈σ
′, ti[()/ri]〉 ‖ p2〈σ

′,let r j = v in t j〉

gi =← c c f [(⊥,σ
′′)] σ ′ = σ +σ ′′

R-SEL-REC⊥
p〈σ ,∑

i

let ri = gi in ti〉 −→ p〈σ ′,let ri =⊥ in ti〉

gi =default ¬∃ j. i 6= j. p〈σ ,∑ j let r j = g j in t j〉 ‖ P−→ p〈σ ′, t ′〉 ‖ P′

R-SEL-DEF

p〈σ ,∑
i

let ri = gi in ti〉 ‖ P −→ p〈σ , ti[()/ri]〉 ‖ P

Figure 12: Operational semantics: Select statement

through channels. Also take note of the additional structure σ , which is sued

to store thread-local information. The main thread starts with local state σ0 =
{E0

hb,E
0
s }, where E0

hb = {(m0,x)} and E0
s = /0. In other words, at the beginning of

execution the main thread has: 1) a record of the shared variable’s initialization in

25



m0(|x:=0|) ‖ p〈σ0,let c = make (chan int,2) in

let = go {x := 42; c← 0} in

let = ← c in load x〉

1
−→ c f [] ‖ cb[σ⊥,σ⊥] ‖ m0(|x:=0|) ‖ p〈σ0,let = go {x := 42; c← 0} in

let = ← c in load x〉
2
−→ c f [] ‖ cb[σ⊥,σ⊥] ‖ m0(|x:=0|) ‖ p〈σ0,let = ← c in load x〉 ‖

ps〈σ0,x := 42; c← 0〉
3
−→ c f [] ‖ cb[σ⊥,σ⊥] ‖ m0(|x:=0|) ‖ p〈σ0,let = ← c in load x〉 ‖

m1(|x:=42|) ‖ ps〈σ1,c← 0〉
4
−→ c f [(0,σ1)] ‖ cb[σ⊥] ‖ m0(|x:=0|) ‖ p〈σ0,let = ← c in load x〉 ‖

m1(|x:=42|) ‖ ps〈σ1,〉
5
−→ c f [] ‖ cb[σ⊥,σ⊥] ‖ m0(|x:=0|) ‖ p〈σ2,let = 0 in load x〉 ‖

m1(|x:=42|) ‖ ps〈σ1,〉
6
−→ c f [] ‖ cb[σ⊥,σ⊥] ‖ m0(|x:=0|) ‖ p〈σ2,load x〉 ‖

m1(|x:=42|) ‖ ps〈σ1,〉
7
−→ c f [] ‖ cb[σ⊥,σ⊥] ‖ m0(|x:=0|) ‖ p〈σ2,42〉 ‖

m1(|x:=42|) ‖ ps〈σ1,〉

Figure 13: Reduction of a simple program according to the weak operational semantics.

the happens-before set E0
hb, and 2) no write event identifiers in the shadowed set

E0
s .

In the first reduction step, the main thread creates a new channel. Similar to

the sequentially consistent semantics, the channel is composed of two queues; the

forward queue q f is initially empty while the backward queue qb is initialized to

two empty local states σ⊥,σ⊥ where σ⊥ = ( /0, /0). These local states represent the

fact that the channel has capacity two and is currently empty. In the second reduc-

tion step, main forks a new thread ps. According to rule R-GO, the new thread

inherits the parent’s local state σ0. After that, the main thread blocks attempting

to receive from an empty channel.

Next, ps writes 42 to x. According to R-WRITE, this creates a new write event

with a fresh name, m1, and modifies ps’s local state to σ1 =(E1
hb,E

1
s ). Naturally, as

ps is aware of its own writing to x, the write event m1 is recorded in ps’s happens-

26



before set, meaning (m1,x) ∈ E1
hb. The initial value of x is no longer visible from

ps’s perspective, since it has been overwritten by the more recent write event m1.

Therefore, the write event m0 associated with x’s initialization is placed in ps’s

shadow set, meaning m0 ∈ E1
s . Therefore, σ1 = ({(m0,x),(m1,x)},{m0}).

Note that, at this point, the write event m1 is not yet recorded into the main

thread’s local state. Note that, according to the read rule, R-READ, the write event

m1 is observable from main’s perspective. So is the initial write event m0. As we

will see in the Discussion section, this superposition of values is known in the

memory model literature the coRR relaxation. When it comes to this particular

example, the main thread is blocked, thus it is not able to read from x and the

coRR behavior does not emerge.

Next, the setup thread sends a message onto the shared channel; see step 4.

According to R-SEND, the message’s value is placed into the channel along with

the sender’s current local state. Then, in step 5, main receives the message and

updates its local state. The new local state, σ2 reflects the fact that main is now

aware of the events that took place (according to the sender’s perspective) when

the message was put onto the channel. In other words, main’s local state is the old

local state σ0 augmented by the state σ1 received through channel communication:

σ2 = σ0 +σ1 = ({(m0,x),(m1,x)},{m0})

The communication served to synchronize the actions of the setup thread from

the perspective of the main thread. At this point, main is also not able to observe

the initial value of the shared variable x = 0. The only observable write event is

m1; therefore, the load x reduces to 42 in step 6.

It is worth to note that, without channel communication, synchronization would

not have been possible. For example, if instead of sending a message, setup and

main tried to synchronize by writing to a shared variable (as shown in Listing 1),

then main’s local state would not be updated to reflect the actions performed by

setup. The program would contain a data race in this case.

6. Relating the strong and the weak semantics

This section describes the relationship between the strong and the weak se-

mantics. After some preliminary definitions, Section 6.1 covers the easy direction:

the weak semantics subsumes the strong one. The converse direction does not

hold in general; it holds only when excluding race condition. This is established

in Section 6.2. Additional intermediate lemmas are relegated to the appendix, in

particular Appendix B.

27



Let us recall the definition of simulation [35] relating states of labeled tran-

sition systems. The set of transition labels and the information carried by the

labels may depend on the specific steps or transitions done by a program and/or

the observations one wishes to attach to those steps. This design choice leads to

a distinction between internally and externally visible steps. Let us write α for

arbitrary transition labels. Later we will use a for visible labels and τ as the label

of invisible or internal steps.

Definition 6.1 (Simulation) Assume two labeled transition systems over the same

set of labels and with state sets S and T . A binary relation R ⊆ S×T is a simu-

lation relation between the two transition systems if s1
α
−→ s2 and s1 R t1 implies

t1
α
−→ t2 for some state t2. Diagrammatically:

s1 t1

s2 t2

R

α α

R

A state t simulates s, written t & s, if there exists a simulation relationR such that

sR t.

We use formulations like “s is simulated by t” interchangeably, and . as

the corresponding symbol. Also, we subscript the operational rules for disam-

biguation; for example, R-READs refers to the strong version of the read while

R-WRITEw to the weak version of the write operation. The rules of the strong se-

mantics are simplifications of the weak rules given in Section 5. More concretely,

in the strong semantics, write events are unique per variable, goroutines do not

have a local state σ , and channels do not carry local state information

The operational semantics is given as unlabeled global transitions −→. To es-

tablish the relationship between the strong and the weak semantics, we make the

steps of the operational semantics more “informative” by labeling them appropri-

ately: For read steps by rule R-READs and R-READw, when reading a value v

from a variable z, the corresponding step takes the form
(z?v)
−−−→. All other steps,

−→ as well as  steps, are treated as invisible and noted as
τ
−→ in the simulation

proofs. We make use of the following “alternative” labeling for the purpose of

defining races and for some of the technical lemmas: we label write and read

steps with the identity of the goroutine responsible for the action and the affected

shared variable. Additionally, we sometimes mention as part of the label the iden-

tity n of the concerned write event. The labeled transitions are thus of the form

28



n(z!)p
−−−→ or

n(z?)p
−−−→. When not needed in the formulation of a property or a proof, we

omit mentioning irrelevant parts of the transition labels. We often use subscripts

when distinguishing the strong from the weak semantics; e.g.
(z!)p
−−→w and

(z!)p
−−→s.

We write =⇒ for
τ
−→
∗

and
a
=⇒ for

τ
−→
∗ a
−→

τ
−→
∗
.

6.1. The weak semantics simulates the strong

Lemma 6.2 (Simulation) Let S0 and P0 be a strong, resp. a weak initial configu-

ration (for the same program with the same initial values for the global variables).

Then P0 & S0.

The proof is given in Appendix A.

6.2. The strong semantics conditionally simulates the weak one

It should be intuitively clear and expected that the weak semantics “contains”

the sequentially consistent strong one as special case. In other words, we expect

the weak semantics to be able to simulate the strong one. Equally clear is that the

opposite direction —the strong semantics simulates the weak— does not hold in

general. If a simulation relation would hold in both directions, the two semantics

would be equivalent,5 thus obviating the whole point of a weak or relaxed memory

model.

Simulation of the weak semantics by the strong one can only be guaranteed

“conditionally.” The standard condition is that the program is “well-synchronized.”

We take that notion to represent the absence of data races, where a data race is a

situation in which two different threads access the same shared variable, at least

one of the accesses is a write, and the accesses are not ordered by the happens-

before relation. The definition is used analogously for the weak semantics.

From the fact that the weak semantics simulates the strong one, we have that

every race condition in the strong semantics can be exhibited in the weak. The

converse, however, is not true: the weak semantics has races not present in the

strong one. The new races in the weak semantics come from the fact that once a

race is reachable, the weaker version of the semantics allows values to be read

which are unobservable to the corresponding sequentially consistent configura-

tion. Therefore, the first race condition is what leads the weak semantics to be-

haviors not present in the strong one. Naturally, if a program is race free from the

5A simulation in both directions, i.e., the relation & ∩ ., does not technically correspond to

bisimulation, but expresses a form of equivalence nonetheless.

29



strong semantics’ perspective, it must be race free from the weak’s perspective

as well. In other words, when checking for race freedom, it suffices to observe

behavior under the strong semantics, which is arguably simpler.

This is, of course, an informal discussion. Next we prove that the weak seman-

tics upholds the SC-DRF guarantee. The proof will be another simulation result:

the strong semantics conditionally simulates the weak one; the condition requires

programs to be data race free.

6.2.1. General invariant properties

Let us introduce some general properties of the weak semantics (i.e., without

assuming race freedom) that will be useful later in conditional simulation proof.

The proofs of the lemmas presented next are mostly relegated to Appendix B.2.1.

Definition 6.3 (Observable and concurrent writes) Let WP stand for the set of

all write events m(|z:=v|) in a weak configuration P and let WP(z) stand for the set

of identifiers of writes events to the variable z:

WP(z) = {m | m(|z:=v|) ∈WP} . (7)

Given a well-formed configuration P, the sets of writes that happens-before, that

are concurrent, and that are observable by process p for a variable z are defined

as follows:

W hb
P (z@p) = Ehb(z@p) (8)

W
9
P (z@p) = WP(z)\Ehb(z@p) (9)

W o
P (z@p) = WP(z)\Es(z@p) . (10)

We also use notations like W o
P ( @p) to denote the set of observable write events

in P for any shared variable.

Lemma 6.4 (Invariants about write events) The weak semantics has the follow-

ing invariants.

1. For all local states (Ehb,Es) of all processes, Es ⊂ Ehb(z).

2. W
9
P (z@p)⊆W o

P (z@p).

3. W
9
P (z@p) 6=W o

P (z@p).

4. W hb
P (z@p)∩W o

P (z@p) 6= /0.

30



As W o
P (z@p) is a proper superset of W

9
P (z@p) by part (2) and (3), each thread

can observe at least one value held by a variable. This means, unsurprisingly, that

no thread will encounter an “undefined” variable. More interesting is the follow-

ing generalization, namely that at each point and for each variable, some value

is jointly observable by all processes. The property holds for arbitrary programs,

race-free or not. Under the assumption of race-freedom, we will later obtain a

stronger “consensus” result: not only is a consensus possible, but there is exactly

one possible observable write, not more.

Lemma 6.5 (Consensus possible) Weak configurations obey the following invari-

ant

⋂

p∈PW o
P (z@p) 6= /0 . (11)

6.2.2. Race-free reductions

Next, we present invariants that hold specifically for race-free programs but

not generally. These invariants will be needed to define the relationship between

the strong and weak semantics via a bisimulation relation. More concretely, the

following properties are ultimately needed to establish that the relationship con-

necting the strong and the weak behavior of a program is well-defined.

Lemma 6.6 (No concurrent writes when it counts) Let P be a reachable con-

figuration in the weak semantics, i.e., P0−→
∗
w P where P0 is the initial configuration

derived from program P.

1. Assume P has no read-write race. If P
(z?)p
−−→w, then W

9
P (z@p) = /0.

2. Assume P has no write-write race. If P
(z!)p
−−→w, then W

9
P (z@p) = /0.

The following lemma, resp. the subsequent corollary express a welcome in-

variant concerning the observability of write events for a given variable z and seen

from the perspective of a thread doing the next read or write step. At the point

specified by the lemma, there is exactly one write event for z, which is observable

by p, and actually its commonly observable by sets of threads that includes the

thread in question. As one consequence, each read-step by a thread in a config-

uration of race-free program observes exactly one value as opposed to choosing

non-deterministically.

Lemma 6.7 (Race-free consensus when it counts) Assume P0−→
∗
w P with P0 race-

free. If P
(z?)p
−−→w or P

(z!)p
−−→w, then there exists a write event m(|z:=v|) such that

⋂

pi
W o

P (z@pi) = {m} , (12)

31



where the intersection ranges over an arbitrary set of processes which includes p.

Corollary 6.8 (Locally deterministic read) Assume P0 −→
∗
w P with P0 race-free.

Then P
n1(?)p
−−−→w and P

n2(?)p
−−−→w implies n1 = n2.

Lemma 6.9 (Race-free consensus) Weak configurations for race-free programs

obey the following invariant

⋂

pi∈PW o
P (z@pi) = {m} (13)

for some write event m(|z:=v|).

Definition 6.10 (Well-formedness for race-free programs) A weak configuration

P is well-formed if

1. write-event references and channel references are unique, and

2. equation (13) from Lemma 6.9 holds.

We write ⊢rf
w P : ok for well-formed configurations P.

We need to relate the weak and strong configurations via a simulation relation

in order to establish the connection between the race-free behaviors of the weak

and strong semantics. We will do so by the means of an erasure function from the

weak to the strong semantics.

Definition 6.11 (Erasure) The erasure of a well-formed weak configuration P,

written ⌊P⌋, is defined as ⌊P⌋ /0 where ⌊P⌋R is given on Table 1 and R is a set

of write event identifiers. On the queues q1 and q2 in the last case, the function

simply jettisons the σ -component in the queue elements.

Note that ⌊P⌋ is not necessarily a well-formed strong configuration. In par-

ticular, ⌊P⌋ may contain two different write events (|z:=v1|) and (|z:=v2|) for the

same variable. Besides, it is not a priori clear whether ⌊P⌋ could remove all write

events for a given variable (thus leaving its value undefined) and the configuration

ill-formed.

Lemma 6.12 (Erasure and congruence) P1 ≡ P2 implies ⌊P1⌋ ≡ ⌊P2⌋.

Lemma 6.13 (Erasure preserves well-formedness) Let P be a race-free reach-

able weak configuration. If ⊢w P : ok then ⊢s ⌊P⌋ : ok.

32



⌊•⌋R = • (14)

⌊p〈σ , t〉⌋R = 〈t〉 (15)

⌊m(|z:=v|)⌋R =

{

• if m ∈ R

(|z:=v|) otherwise
(16)

⌊P1 ‖ P2⌋
R = ⌊P1⌋

R ‖ ⌊P2⌋
R (17)

⌊νn P⌋R =

{

⌊P⌋R if ∀p ∈ P. n ∈W o
P ( @p)

⌊P⌋R∪{n} otherwise
(18)

⌊c[q1,q2]⌋
R = c[⌊q1⌋

R,⌊q2⌋
R] (19)

Table 1: Definition of the erasure function ⌊P⌋R

Theorem 6.14 (Race-free simulation) Let S0 and P0 be a strong, resp. a weak

initial configuration for the same thread t and representing the same values for

the global variables. If S0 is data-race free, then S0 & P0.

PROOF. Assume two initial race-free configurations P0 and S0 from the same

program and the same initial values for the shared variables. To prove the &-

relationship between the respective initial configurations we need to establish a

simulation relation, say R, between well-formed strong and weak configurations

such that P0 and S0 are in that relation.

Let P and S be well-formed configurations reachable (race-free) from P0 resp.

S0. DefineR as relation between race-free reachable configurations as

PR S if S≡ ⌊P⌋ (20)

using the erasure from Definition 6.11. Note that by Lemma 6.12, P1 R S and

P1 ≡ P2 implies P2 R S.

Case: R-WRITEw: p〈σ ,z := v; t〉 −→w νm (p〈σ ′, t〉 ‖ m(|z:=v|)),
where σ = (Ehb,Es) and σ ′ = (E ′hb,E

′
s) = (Ehb + (m,z),Es + Ehb(z)). By the

concurrent-writes Lemma 6.6(2), W
9
P (z@p) = /0, i.e., there are no concurrent

write events from the perspective of p. This implies that for all write events

m′(|z:=v′|) in P, we have m′ ∈ Ehb. If m′ ∈ Es, then m∈ E ′s as well. If m′ ∈ Ehb \Es,

then m′ ∈ E ′s as well. Either way, all write events to z contained in P prior to the

step are shadowed in p after the step.

33



Now for the new write event m in P′: clearly m ∈W o
P′(z@pi), i.e., the event is

observable for all threads. By the race-free consensus Lemma 6.9, we have that

this is the only event that is observable by all threads, i.e.

⋂

pi

W o
P′(z@pi) = {m} . (21)

That means for the erasure of P′ that ⌊P′⌋ ≡ . . . ‖ p〈t〉 ‖ (|z:=v|) where (|z:=v|) is

the result of applying ⌊ ⌋ to the write event m(|z:=v|) of P. In particular, equation

(21) shows that the write event m is not “filtered out” (cf. the cases of equation

(16) and (18) in Definition 6.11) and furthermore that all other write events for z

in P′ are filtered out.6 It is then easy to see that by R-WRITEs, ⌊P⌋ −→s ⌊P
′⌋.

The remaining cases are similar. ⊓⊔

7. Implementation

We have implemented the strong and the weak semantics in K, a rewrite-based

executable semantics framework [26, 41]. Concretely, the implementation helped

us work through corner cases in the semantics. In addition, we believe the code

can help the interested reader assimilate the reduction rules and explore alterna-

tives by making modifications to the sources available online [16]. We have made

use of K’s built-in types and data-structures (Set, Map, and List), which we

believe facilitated the work. The code is modular. In fact, most of the implemen-

tation (ie. rules related to local steps, goroutine creation, channel communication)

is reused between the weak and strong semantics. The implementation of the

weak and strong semantics differ only when it comes to the treatment of memory.

To give a flavor of the rewriting rules, we start by looking at part of the

implementation of the R-RECEIVE rule in Figure 11. The code, given on Fig-

ure 14, involves a goroutine receiving a value from a chan. The condition un-

der “requires” stipulates additionally that the value being read from the channel

must not be the special end-of-transmission marker (the act of attempting to re-

ceive from a previously closed channel is handled by a different rewrite rule).

A term to the left of => is rewritten to the term on the right. In this particular

case, the receive reduces to V (line 2) corresponding to the head of the forward

queue (line 12). The receiving goroutine’s local state is updated. In specific, its

6The latter is indirectly clear already as we have established that ⌊⌋ preserves well-formedness

under the assumption of race-freedom (Lemma 6.13).

34



happens-before and shadowed information (HMap and SSet on lines 4 and 5) are

rewritten to take into account the happens-before and shadow information in the

forward queue (HMapDp and SSetDp on lines 13 and 14 resp.). The received entry

is removed from the forward queue (lines 12-14) and the receiver’s local state is

added to the channel’s backward queue (lines 15 and 16).

1 rule <goroutine >

2 <k> <- channel (Ref:Int) => V ... </k>

3 <sigma >

4 <HB > HMap:Map => mergeHB (HMap , HMapDP ) </HB >

5 <S> SSet:Set => SSet SSetDP </S>

6 </sigma >

7 <id > _ </id >

8 </goroutine >

9 <chan >

10 <ref > Ref </ref >

11 <type > _ </type >

12 <forward > ListItem ( ListItem (V)

13 ListItem ( HMapDP )

14 ListItem ( SSetDP ) ) => .List </forward >

15 <backward > BQ:List => ListItem ( ListItem (HMap)

16 ListItem (SSet )) BQ </backward >

17 </chan >

18 requires notBool ( V ==K $eot )

Figure 14: Snippet from the implementation of the channel receive rule in K

A byproduct of the implementation is the ability to execute programs and ob-

serve their output. At the start of execution, the runtime configuration has the

format shown on Figure 15, with goroutines held inside <G>...</G>, write events

inside <W>...</W>, and channels inside <C>...</C>. The initial configuration fea-

tures a single goroutine whose id is 1 (line 4). Initially, this goroutine holds

no happens-before or shadowed information (lines 7 and 8 resp.). The tokens

$PGM:Pgm are a placeholder for a syntactically valid program that gets filled by K

when execution starts. If the program declares shared variables, the implementa-

tion initializes them to 0.

As execution progresses, meaning, as write events are recorded and additional

goroutines and channels are created, the configuration is expanded. Take the ex-

ample given on Section 2, where a simple setup function is called asynchronously

from main. The example, rewritten in the proposed syntax, is shown on Listing 4.

Coordination is achieved through a shared channel. A message indicates that the

35



1 <mmgo >

2 <G>

3 <goroutine >

4 <id > 1 </id >

5 <k> $PGM:Pgm </k>

6 <sigma >

7 <HB > .Map </HB >

8 <S> .Set </S>

9 </sigma >

10 </goroutine >

11 </G>

12 <W> .Map </W>

13 <C> . ChanCellBag </C>

14 </mmgo >

Figure 15: The initial runtime configuration

setup is complete and, according to the semantics of channel communication, the

receiver can no longer read the initial shared variable’s value and will instead read

the value updated by the setup function.

Figure 16 shows the end configuration7 for a run of the example. In it, there

are two goroutines: the “main” goroutine (whose id is 1) terminates in state “42”

(line 4) corresponding to the value read from the shared variable. The “setup”

goroutine terminates in the state unit (line 11), which is the value resultant from

executing its last instruction, namely c<-0. Note that there are two write events

recorded in the final configuration. One coming from the initialization of x to

0 and another corresponding to the write of 42 into x by the “setup” goroutine.

Note also the presence of a channel inside <C>, which was created by “main” to

coordinate with “setup.”

8. Discussion

This section positions our work in a wider context, revisiting notions from

axiomatic semantics of memory models and using litmus tests to highlight sim-

ilarities and differences between our semantics and a well formulated axiomatic

one [3]. In the axiomatic semantics of memory models, the execution of a given

program (i.e. the manifestation of a particular control flow and thread interleav-

7An end configuration is a configuration to which no further rewrite rules apply.

36



1 <mmgo >

2 <G>

3 <goroutine > <id > 1 </id >

4 <k> 42 </k>

5 <sigma >

6 <HB > x |-> ( SetItem ( 3 ) SetItem ( 7 ) ) </HB >

7 <S> SetItem ( 3 ) </S>

8 </sigma >

9 </goroutine >

10 <goroutine > <id > 5 </id >

11 <k> $unit </k>

12 <sigma >

13 <HB > x |-> ( SetItem ( 3 ) SetItem ( 7 ) ) </HB >

14 <S> SetItem ( 3 ) </S>

15 </sigma >

16 </goroutine >

17 </G>

18 <W> x |-> ( 3 |-> 0 7 |-> 42 ) </W>

19 <C>

20 <chan >

21 <ref > 4 </ref >

22 <type > int </type >

23 <forward > .List </forward >

24 <backward >

25 ListItem ( ListItem ( x |-> SetItem (3) ) ListItem (. Set ))

26 ListItem ( ListItem (. Map) ListItem (. Set )) </backward >

27 </chan >

28 </C>

29 </mmgo >

Figure 16: Sample output from running Listing 4 on the weak semantics

ing) gives rise to candidate executions. Candidate executions are graphs that help

define and illustrate behavior accepted or rejected by the semantics; see [8] as

example. The graphs are composed of events (nodes) representing memory oper-

ations and relations (edges) over events. In this section we use (n:Rx = v)p and

(n:Wx = w)p for read and write events of a value v on a shared variable x, where

n is the unique identifier and p is the identifier of the thread responsible for the

event. The thread identifier is omitted when it can be deduced from the context.

Aspects of a memory model are often captured by litmus tests, which are

tailor-made code snippets that highlight features of a memory model. As illus-

tration, on the left of Figure 17 is the well-known litmus test for message pass-

37



ing (mp) and, on the right, a corresponding candidate execution. The code snippet

p0 p1

x := 1; r1 := y;

y := 1; r2 := x;

not (r1 = 1 and r2 = 0)

(a) Litmus test

p0 p1

n1:Wx = 1

n2:Wy = 1

n3:Ry = 1

n4:Rx = 0

ppo

rf

ppo

fr

(b) Candidate execution

Figure 17: mp (message passing)

shows process p0 sending data to p1 via x and using a write to y as signal that the

data is “ready.” For this simple form of synchronization to work, the observation

r1 = 1 and r2 = 0 must be forbidden. The underlying assumptions, in this case, are

that 1) the order of reads by p1 reflects the order in which the writes are effected

by p0, and 2) the writes by p0 respect program order.

The candidate execution of Figure 17b gives a justification for the impossi-

bility of the observation r1 = 1 and r2 = 0 which violates the mp pattern. The

edge n2→rf n3 of the “read-from” relation→rf expresses the fact that n3 reads the

value written by n2. More complex is the “from-read” relation: the edge n4→fr n1

stipulates that n4 “reads-from” some write event left unmentioned and for which

n1 comes “after.” More precisely, it abbreviates n0→rf n4 for some write event n0

with n0 →co n1 and where →co represents the coherence order, which is a total

order of writes over the same memory location. In the example, n0 is the write

event setting x to its initial value 0; by convention, such initialization events are

often left out of candidate executions. Using the mentioned coherence order, the

from-read relation captures the intuition that a read observes a value written prior

to subsequent write. In contrast to the concept of coherence order, our model does

not employ the notion of a total order of writes on a location. Instead, informa-

tion about which writes are observable by a read is kept local per thread and past

writes events are considered unordered.

Note form the mp example that the preserved program order edges n1→ppo n2

and n3→ppo n4 disallow out-of-order execution of the two writes and, also, of the

two reads. The preservation of program order is characteristic for strong memory

models such as the semantics presented in Section 4 In weaker settings, the→ppo-

edges may be replaced by →po-edges. For example, both our model and PSO-

38



style memory models with per-location write buffers allow the observation r1 = 1

and r2 = 0 in the mp litmus test of Figure 17. From our perspective, however, the

treatment of the writes is best not seen as “buffering” since, after all, the value

of a write becomes immediately observable in our operational semantics. In our

weak memory model, it is the negative information of being unobservable that is

not immediately available to all observers. To percolate through the system, this

negative information requires synchronization via channel communication.

Another aspect of our semantics is that, from an observer thread’s perspective,

writes from different threads never invalidate each other. In the absence of syn-

chronization, writes from other threads remain observable indefinitely. A litmus

test typifying that kind of behavior is known as coRR,8 shown in Figure 18.

p0 p2

r1 := x; x := 1;

r2 := x;

r1 = 1, r2 = 0

(a) Litmus test

p0 p1

n1:Rx = 1

n2:Rx = 0

n3:Wx = 1

po

rf

fr

(b) Candidate execution

Figure 18: coRR

The fact that repeated reads by the same thread give different seemingly inco-

herent values can be interpreted as a form of oscillation: when reads and writes

happen “at the same time,” i.e., in a racy way without proper synchronization,

the memory can be perceived as oscillating. Conceptually, in the example of Fig-

ure 18, x oscillates between the old value 0 and the new value of 1 indefinitely.

This behavior is allowed by our proposed semantics. As a matter of fact, it

is also allowed by Sparc RMO [23] and pre-Power4 machines [44]. Many other

models, though, including the axiomatization by [3], disallow the coRR behavior.

Load buffering is a relaxation which complements write buffering. Its effect

is often illustrated by the litmus test of Figure 19. The candidate execution graph

8In general, coherence tests coXY involve an access of kind X and an access of kind Y with X

and Y standing for either R (read) or W (write).

39



shows a run which justifies r1 = 1 and r2 = 1 as follows: the load or read of

event n1 is buffered, thereby taking effect after the write event n4. This causes

the instructions n3 and n4 to be executed out-of-order. For p0, however, the read

cannot be postponed until after the write, as the value of the write depends, via

r1, on the value being read. Program order has to be preserved due to a data de-

pendence, indicated by a→ppo-edge. The circumstances in which program order

is preserved depends on the programming language semantics and/or the given

hardware memory model. For example, various forms of special fence instruc-

tions (e.g. light-weight fences, full fences, control fences), which directly affect

ordering, may be available on a given platform.

p0 p1

r1 := x; r2 := y;

y := r1; x := 1;

r1 = 1, r2 = 1

(a) Litmus test

p0 p1

n1:Rx = 1

n2:Wy = 1

n3:Ry = 1

n4:Wx = 1

ppo

rf

po

rf

(b) Candidate execution

Figure 19: Load buffering (lb)

In contrast to writes, our semantics treats reads in a “strong,” unbuffered way.

Load buffering is conceptually more challenging than write buffering. Thinking

operationally, dispatching an “asynchronous” write instruction is like “fire-and-

forget.” When executing an “asynchronous” read, however, the corresponding

process continues regardless of whether the value it wishes to read has been ob-

tained. This non-blocking nature is particularly problematic if it is assumed (as

in our model) that reading is done without any synchronization. Subsequent code

may depend on the value being read; the dependency may not only be a data-

dependency (as the write to y in Figure 19a), but also a control flow dependency.

Control flow dependency on values not yet available are common. When the reads

are “synchronous,” these dependencies are not an issue: execution is stalled until

the value is available. Difficulties emerge when the reads are “asynchronous;” in

these cases, a decision has to be made regardless of whether the value is resolved.

Only later, when the actual value is present, can the decision be revised. It could

be the case that the decision is later deemed acceptable and execution continues as

usual. It could also be the case that the branch decision leads to an impossibility,

40



in which case execution needs to be back-tracked and an alternate path explored.

It could also be the case that the branching decision is justified given a circular

argument. As we will see next, circular reasoning is often deemed undesirable in

a memory model.

One important aspect in connection with load buffering is illustrated in Fig-

ure 20. It closely resembles the previous case from Figure 19. The crucial differ-

ence is an additional data dependency in p1: the write statement has a data depen-

dency on the preceding read event. This dependency is reflected in the graph by a

→ppo-edge, as opposed to a→po-edge as in Figure 19b.

p0 p1

r1 := x; r2 := y;

y := r1; x := r2;

r1 = 1, r2 = 1 (out-of-thin-air)

(a) Litmus test

p0 p1

n1:Rx = 1

n2:Wy = 1

n3:Ry = 1

n4:Wx = 1

ppo

rf

ppo

rf

(b) Candidate execution

Figure 20: lb+ppos

The outcome r1 = 1 = r2 could be justified in that n1 reads the value 1 written

by n4, subsequently used in the write n2, which in turn is read by n3, and used in

the write event n4 (see the candidate execution). This involves a circular argument

and produces a value, the number 1, that does not even appear in the program

text. Such behavior is termed “out-of-thin-air” and is generally, though not uni-

versally, considered illegal. In other words, the candidate graph of Figure 20b is

ruled out by many memory models, for example [3]. Our operational semantics,

given the absence of load buffering, also does not exhibit out-of-thin air behav-

ior. Note, however, that in the informal happens-before Go memory model [20],

out-of-thin-air behavior of this kind is allowed, as there are no statements or mech-

anisms which forbid the behavior. The Go model operates with the plain notion

of program order →po, stipulating that →po ⊆ →hb. Therefore, in the situation

of Figure 20, with→po instead of→ppo-edges, the out-of-thin-air observation is

perfectly acceptable.9

9That is not to say that Go implementations will exhibit that behavior, just that it is consistent

41



Finally, we go back to the message passing pattern from Figure 17 to illus-

trate the role of channel communication. The assured ordering of the reads, resp.

writes, represented by →ppo-edges in Figure 17b can also be enforced by vari-

ous fences. A properly synchronized message passing protocol would require, in

many relaxed memory models, adding for example two full fences between the

write resp. read instructions. These fences are shown as→ff-edges in Figure 21a

(cf. also [3]). The candidate execution illustrates the impossibility of the obser-

vation r1 = 1 and r2 = 2 to the litmus test from Figure 17a with added fences.

Channel communication is the only synchronization primitive in our setting and,

as we will see next, the effects of the fences can be achieved through sends and

receives.

p0 p1

n1:Wx = 1

n2:Wy = 1

n3:Ry = 1

n4:Rx = 0

ff

rf

ff

fr

(a) mp+ffences

p0 p1

n1:Wx = 1

n′2:c← 0

n′3:← c

n4:Rx = 0

hb

hb

hb

fr

(b) mp+chan

Figure 21: mp with synchronization

In Figure 21b, p0 updates the value of x, thereby shadowing its old value

from p0’s local perspective. The thread then sends a message on a channel.10

Since negative observability information (i.e. a thread’s shadow set) travels along

channels, the receiving thread p1 cannot read the stale value of x and will read

the updated value 1 instead. The example also showcases how our model leads us

to think about synchronization as restriction on observability. Rather than having

write events percolating through a memory hierarchy composed of buffers and

caches, in our semantics writes become visible immediately.

with the specification.
10At this point the reader may be wondering why write to x and then send a message on a

channel instead of simply sending the value of x itself over the channel? In general, the shared

resource may not be a single variable but a complex data structure. Take the example of a graphics

pipeline with threads operating on a frame buffer. The buffer can reside in shared memory while

threads coordinate the work by sending and receiving tokens on a channel.

42



9. Limitations and future work

As seen, the semantics currently covers asynchronous writes, but only syn-

chronous reads. Load buffering, however, accounts for an important form of re-

laxation that is present in many memory models, including that of Go. Therefore,

the operation model presented here is less relaxed than the one of Go. We are cur-

rently working on adding read relaxation, which involves allowing control flow

dependencies on read events “in-transit,” meaning, branching on values that have

not been retrieved from memory yet. Thus, the semantics will have a flavor of

speculative execution similar to modern hardware. This will complicate the proof

of conditional simulation.

On the other hand, our current model does support coRR behavior as illus-

trated in the example of Section 5.4 and discussed in Section 8. This is in line

with informal description of the Go memory model, even if coRR behavior may

not be exhibited by actual Go compilers. The fact that the semantics allows for

coRR behavior is not a problem to compiler writers. Complications can arise

when the language semantics is more restrictive than the underlying architecture,

but typically not the other way around. When emitting code to an architecture

more relaxed than the language, the compiler must insert synchronization primi-

tives in order to support its contract with the application programmer.

We believe that, once load buffering is incorporated, the augmented memory

model will be lax enough to be a superset of Go’s.11 It will be interesting, then, to

formally establish that relationship. As a mater of fact, one avenue of future work

involves analyzing the proposed memory model as a basis for compiler verifica-

tion. Similar to what CakeML is to ML [28], we envision the proposed semantics

(once load buffering has been incorporated) as a high level specification with a

chain of simulation relations towards more concrete operational semantics, all the

way down to an actual compiler implementation.

10. Related work

There are numerous proposals for and investigations of weak and relaxed

memory models [1, 34, 3]. One widely followed approach, called axiomatic, spec-

ifies allowed behavior by defining various ordering relations on memory accesses

11Perhaps the relation between Go’s memory model and our operational semantics can be so-

lidified by first translating the English specification to an axiomatic semantics and then proving a

correspondence between this semantics and the operational one.

43



and synchronizing events. Go’s memory model [20] gives an informal impression

of that style of specification. Less frequent are operational formalizations.

Boudol and Petri [12] investigate a relaxed memory model for a calculus with

locks relying on concepts of rewriting theory. Unlike the presentation here, writes

are buffered in a hierarchy of fifo-buffers reflecting the syntactic tree structure of

configurations: immediately neighboring processors share one write buffer, neigh-

bors syntactically further apart share a write buffer closer to the shared global

memory located at the root. The position of a redex in the configuration is used as

thread identifier and determines which buffers are shared. Consequently, parallel

composition cannot be commutative and, therefore, terms cannot be interpreted

up-to congruence ≡ as in our case.

Zhang and Feng [45] use an abstract machine to operationally describe a

happens-before memory model. Different from us, they make use of event buffers.

Similar to us, they keep “older” write events to account for more than one observ-

able variable value. The paper does not, however, deal with channel communi-

cation. Another operational semantics that uses histories of time-stamped, past

read/write events is given by Kang et al. [27]. In this semantics, threads can

promise future writes, and a reader acquires information on the writer’s view of

memory. Fences then synchronize global time-stamps on memory with thread-

local information. Bisimulation proofs mechanized in Coq show the correctness

of compilation to various architectures.

Pichon-Pharabod and Sewell [39] investigate an operational representation of

a weak memory model that avoids problems of the axiomatic candidate-execution

approach in addressing out-of-thin-air behavior. The semantics is studied in a cal-

culus featuring locks as well as relaxed atomic and non-atomic memory accesses.

Guerraoui et al. [21] introduce a “relaxed memory language” with an operational

semantics to enable reasoning about various relaxed memory models. Their aim is

to allow correctness arguments for software transactional memories implemented

on weak-memory hardware. Another operational semantics is that of Flanagan

and Freund [18], who present a weak memory model used as the basis for a race

checker. The model is not as weak as the official Java Memory Model (JMM) but

weaker than standard Java Virtual Machine implementations.

Much effort has been placed on Java and the JMM. In [32], Lochbihler points

out how several features of Java, including dynamic memory allocation, thread

spawns and joins, the wait-notify mechanisms, interruption, and infinite execu-

tions, interact in subtle ways with the language’s memory model. Even though

these features have been studied in their own right, Lochbihler’s was the first paper

to take their combined effect into account. Many of the complications analyzed

44



in the paper arise from Java’s security architecture. It has been known that secu-

rity can be compromised when out-of-thin-air behavior is allowed. For example,

out-of-thin-air may be leveraged to forge a pointer to String’s underlying char

array, which is assumed to be immutable for security reasons. Lochbihler shows,

however, that security can be compromised by data races even after eliminating

out-of-thin-air behavior. In contrast, the Go memory model does not preclude

out-of-thin air behavior.

Demange et al. [14] formalize a weak semantics for Java using buffers. The se-

mantics is quite less relaxed than the official JMM specification, the goal being to

avoid the intricacies of the happens-before JMM and offer a firmer ground for rea-

soning. The model is defined axiomatically and operationally and the equivalence

of the two formalizations is established. Jagadeesan et al. [24] present an oper-

ational semantics for a relaxed memory model for a concurrent, object-oriented

language. The formalization is consistent with the official Java memory model

JMM for data-race free programs. The semantics deviates from JMM though; it

is weaker in that it allows more optimizations. Unlike our semantics, [24] allows

speculative executions while at the same time still avoiding out-of-thin observa-

tions.

Alrahman et al. [4] formalize a relaxed total-store order memory model with

fence and wait operations. They provide an implementation in Maude, a rewriting-

based executable framework that precedes K, and explore ways to mitigate state-

space explosion. Lange et al. [31] define a small calculus, dubbed MiGo or mini-

Go, featuring channels and thread creation. The formalization does not cover

weak memory. Instead, the paper uses a behavioral effect type system to analyze

channel communication.

11. Conclusion

This paper presents an operational specification for a weak memory model

with channel communication as the prime means of synchronization. In it, we

prove the central guarantee that race-free programs behave sequentially consis-

tently. The our semantics is accompanied by an implementation in the K frame-

work and by several examples and test cases [16]. We plan to use the implemen-

tation towards the verification of program properties such as data-race freedom.

Also, as the semantics is further relaxed, additional complications in the SC-DRF

proof are likely to arise. At that point, we expect the implementation in K to help

us manage the proof.

45



The current weak semantics remembers past write events as part of the run-

time configuration, but does not remember read events. We are working on further

relaxing the model by treating read events similar to the representation of writes.

This will allow us to accommodate load buffering behavior common to relaxed

memory models, including that of Go.

Acknowledgments. We thank Olaf Owe for his comments on draft versions of the

paper and anonymous reviewers for their valuable input.

46



Bibliography

[1] S. V. Adve, K. Gharachorloo, Shared Memory Consistency Models: A Tu-

torial, Research Report 95/7, Digital WRL, 1995.

[2] S. V. Adve, M. D. Hill, Weak Ordering — A New Definition, SIGARCH

Computer Architecture News 18 (3a) (1990) 2–14.

[3] J. Alglave, L. Maranget, M. Tautschnig, Herding Cats: Modelling, Simu-

lation, Testing, and Data-Mining for Weak Memory, ACM Transactions on

Programming Languages and Systems 36 (2).

[4] Y. A. Alrahman, M. Andric, A. Beggiato, A. Lluch-Lafuente, Can We Ef-

ficiently Check Concurrent Programs Under Relaxed Memory Models in

Maude?, in: S. Escobar (Ed.), Rewriting Logic and Its Applications – 10th

International Workshop, WRLA 2014. Revised Selected Papers, vol. 8663

of Lecture Notes in Computer Science, Springer Verlag, ISBN 978-3-319-

12903-7, 21–41, 2014.

[5] G. R. Andrews, Foundations of Multithreaded, Parallel, and Distributed Pro-

gramming, Addison-Wesley, 2000.

[6] D. Aspinall, J. Ševčı́k, Java memory model examples: Good, bad and ugly,

Proc. of VAMP 7.

[7] M. Batty, K. Memarian, K. Nienhuis, J. Pichon-Pharabod, P. Sewell, The

Problem of Programming Language Concurrency Semantics, in: J. Vitek

(Ed.), Programming Languages and Systems: 24th European Symposium on

Programming, ESOP 2015, vol. 9032 of Lecture Notes in Computer Science,

Springer Verlag, 283–307, 2015.

[8] M. Batty, S. Owens, S. Sarkar, T. Weber, Mathematizing C++ Concurrency,

in: Proceedings of POPL ’11, ACM, 55–66, 2011.

[9] Becker, Programming Languages — C++, ISO/IEC 14882:2001, 2011.

[10] H.-J. Boehm, S. V. Adve, Foundations of the C++ Concurrency Memory

Model, in: ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), ACM, 68–78, 2008.

47



[11] H.-J. Boehm, B. Demsky, Outlawing Ghosts: Avoiding Out-of-thin-air Re-

sults, in: Proceedings of the Workshop on Memory Systems Performance

and Correctness, MSPC ’14, ACM, New York, NY, USA, ISBN 978-1-4503-

2917-0, 7:1–7:6, doi:10.1145/2618128.2618134, 2014.

[12] G. Boudol, G. Petri, Relaxed Memory Models: An Operational Approach,

in: Proceedings of POPL ’09, ACM, 392–403, 2009.

[13] W. W. Collier, Reasoning about Parallel Architectures, Prentice Hall, inter-

national edn., 1992.

[14] D. Demange, V. Laporte, L. Zhao, S. Jagannathan, D. Pichardie, J. Vitek,

Plan B: A Buffered Memory Model for Java, in: Proceedings of POPL ’13,

ACM, 329–342, 2013.

[15] A. A. A. Donovan, B. W. Kernighan, The Go Programming Language,

Addison-Wesley, 2015.

[16] D. Fava, Operational Semantics of a Weak Memory Model with Channel

Synchronization, URL https://github.com/dfava/mmgo, 2017.

[17] D. Fava, M. Steffen, V. Stolz, Operational Semantics of a Weak Mem-

ory Model with Channel Synchronization, in: K. Havelund, J. Peleska,

B. Roscoe, E. de Vink (Eds.), FM, vol. 10951 of Lecture Notes in Computer

Science, Springer Verlag, 1–19, 2018.

[18] C. Flanagan, S. N. Freund, Adversarial Memory for Detecting Destructive

Races, in: B. Zorn, A. Aiken (Eds.), ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI), ACM, 244–254,

2010.

[19] Go language specification, The Go Programming Language Specification,

https://golang.org/ref/spec, 2016.

[20] Go memory model, The Go Memory Model,

https://golang.org/ref/mem, version of May 31, 2014, covering

Go version 1.9.1, 2014.

[21] R. Guerraoui, T. A. Henzinger, V. Singh, Software Transactional Memory on

Relaxed Memory Models, in: A. Bouajjani, O. Maler (Eds.), Proceedings of

CAV ’09, vol. 5643 of Lecture Notes in Computer Science, Springer Verlag,

321–336, doi:10.1007/978-3-642-02658-4 26, 2009.

48

http://dx.doi.org/10.1145/2618128.2618134
https://github.com/dfava/mmgo
https://golang.org/ref/spec
https://golang.org/ref/mem
http://dx.doi.org/10.1007/978-3-642-02658-4_26


[22] C. A. R. Hoare, Communicating Sequential Processes, Communications of

the ACM 21 (8) (1978) 666–677.

[23] S. I. Inc, D. L. Weaver, The SPARC architecture manual, Prentice-Hall,

1994.

[24] R. Jagadeesan, C. Pitcher, J. Riely, Generative Operational Semantics for

Relaxed Memory Models, in: A. D. Gordon (Ed.), Programming Languages

and Systems, vol. 6012 of Lecture Notes in Computer Science, Springer Ver-

lag, 307–326, 2010.

[25] G. Jones, M. Goldsmith, Programming in occam2, Prentice-Hall Interna-

tional, Hemel Hampstead, 1988.

[26] K framework, The K Framework, available at

http://www.kframework.org/, 2017.

[27] J. Kang, C. Hur, O. Lahav, V. Vafeiadis, D. Dreyer, A promising

semantics for relaxed-memory concurrency, in: G. Castagna, A. D.

Gordon (Eds.), Proceedings of POPL ’17, ACM, 175–189, URL

http://dl.acm.org/citation.cfm?id=3009850, 2017.

[28] R. Kumar, M. O. Myreen, M. Norrish, S. Owens, CakeML: a verified imple-

mentation of ML, in: The 41st Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL ’14, San Diego, CA,

USA, January 20-21, 2014, 179–192, 2014.

[29] L. Lamport, Time, Clocks, and the Ordering of Events in a Distributed Sys-

tem, Communications of the ACM 21 (7) (1978) 558–565.

[30] L. Lamport, How to Make a Multiprocessor Computer that Correctly Ex-

ecutes Multiprocess Programs, IEEE Transactions on Computers C-28 (9)

(1979) 690–691.

[31] J. Lange, N. Ng, B. Toninho, N. Yoshida, Fencing off Go: Liveness and

Safety for Channel-Based Programming, in: G. Castagna, A. D. Gordon

(Eds.), Proceedings of POPL ’17, ACM, 748–761, 2017.

[32] A. Lochbihler, Making the Java Memory Model Safe, ACM Transactions on

Programming Languages and Systems 35 (4) (2013) 12:1–12:65.

49

http://www.kframework.org/
http://dl.acm.org/citation.cfm?id=3009850


[33] J. Manson, W. Pugh, S. V. Adve, The Java Memory Model, in: Proceedings

of POPL ’05, ACM, 378–391, 2005.

[34] L. Maranget, S. Sarkar, P. Sewell, A Tutorial Introduction to the ARM and

POWER Relaxed Memory Models (Version 120), 2012.

[35] R. Milner, An Algebraic Definition of Simulation between Programs, in:

Proceedings of the Second International Joint Conference on Artificial Intel-

ligence, William Kaufmann, 481–489, 1971.

[36] R. Milner, J. Parrow, D. Walker, A Calculus of Mobile Processes, Part I/II,

Information and Computation 100 (1992) 1–77.

[37] C. Palamidessi, Comparing the Expressive Power of the Synchronous and

the Asynchronous π-calculus, in: Proceedings of POPL ’97, ACM, 256–

265, 1997.

[38] K. Peters, U. Nestmann, Is it a “Good” Encoding of Mixed Choice?, in:

Proceedings of the International Conference on Foundations of Software

Science and Computation Structures (FoSSaCS ’12), vol. 7213 of Lecture

Notes in Computer Science, Springer Verlag, 210–224, 2012.

[39] J. Pichon-Pharabod, P. Sewell, A Concurrency-Semantics for Relaxed Atom-

ics that Permits Optimisation and avoids Thin-Air Executions, in: Proceed-

ings of POPL ’16, ACM, 622–633, 2016.

[40] W. Pugh, Fixing the Java Memory Model, in: Proceedings of the ACM Java

Grande Conference, 89–98, 1999.

[41] G. Roşu, T. F. Şerbănuţă, An Overview of the K Semantic Framework, Jour-

nal of Logic and Algebraic Methods in Programming 79 (6) (2010) 397–434,

doi:10.1016/j.jlap.2010.03.012.

[42] A. Sabry, M. Felleisen, Reasoning about programs in continuation-passing

style, in: W. Clinger (Ed.), Conference on Lisp and Functional Programming

(San Francisco, California), ACM, 288–298, 1992.

[43] M. Steffen, A Small-Step Semantics of a Concurrent Calculus With Go-

routines and Deferred Functions, in: E. Ábrahám, M. Huisman, E. B.

Johnsen (Eds.), Theory and Practice of Formal Methods. Essays Dedicated

to Frank de Boer on the Occasion of his 60th Birthday (Festschrift), vol.

50

http://dx.doi.org/10.1016/j.jlap.2010.03.012


9660 of Lecture Notes in Computer Science, Springer Verlag, 393–406,

2016.

[44] J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Q. Le, B. Sinharoy, POWER4

system microarchitecture, IBM Journal of Research and Development 46 (1)

(2002) 5–25.

[45] Y. Zhang, X. Feng, An Operational Happens-Before Memory Model, Fron-

tiers in Computer Science 10 (1) (2016) 54–81.

51



A. The weak semantics simulates the strong

PROOF OF LEMMA 6.2 (SIMULATION). To prove the&-relationship between the

respective initial configurations, we need to establish a simulation relation, sayR,

between (well-formed) strong and weak configurations such that S0 and P0 are in

that relation. To ease the definition of the relation R connecting the strong and

the weak semantics, we introduce a few abbreviations.

Configurations for the weak semantics contain additional book-keeping in-

formation, such as identifiers for write events and the thread local views on the

global configuration. Given a configuration in the weak semantics, a correspond-

ing strong configuration is one where all the extra information is removed. More

formally: The erasure of a goroutine p〈σ , t〉, written ⌊p〈σ , t〉⌋ is defined as 〈t〉.
The erasure of forward channel c f [q], written ⌊c f [q]⌋, replaces each element (v,σ)
of the queue by v. For a backward channel cb[q], the σ -elements are replaced by

unit values. The special end-of-transmission value ⊥ remains unchanged. We use

erasure correspondingly also on whole configurations.

Given a strong well-formed configuration S, we allow ourselves to interpret it

as a mapping from shared variables to their values, writing σS(z) = v if S contains

a write event of the form (|z:=v|). This interpretation is independent of the con-

figurations’ syntactical representation, meaning S1 ≡ S2 implies σS1
= σS2

. Fur-

thermore, according to this interpretation, σS is a well-defined function when S is

well-formed (which means there exists one write event per shared variable). For

weak configurations P, there is no uniqueness of write events for a given shared

variable. Analogously, we could define a “multi-valued” state σP(z)= {v1, . . . ,v2}
collecting all values written to z in any write event. We need, however, a mild re-

finement of that notion for the definition of simulation: We must record the status

of the shared variables from the perspective of an individual thread. In the weak

semantics, goroutines maintain in σ information about which write events are ob-

servable for that goroutine, namely all those which are not “shadowed.” So, given

a well-formed configuration P and a set N of names, we define σN
P as follows:

σN
P (z) = {v | m(|z:=v|) ∈ P and m /∈ N} . (A.1)

We then define the relation R between well-formed strong and weak configu-

ration over the same set of shared variables as follows: S R P if ⌊P⌋ = S (as

far as goroutines and channels is concerned) and furthermore, for each goroutine

p〈( ,Es), t〉 in P, and all shared variables z,

σS(z) ∈ σ
Es

P (z) . (A.2)

52



Case: R-WRITEs: p〈z := v; t〉 ‖ (|z:=v′|)
τ
−→s p〈t〉 ‖ (|z:=v|)

By definition, SR P implies that P contains a goroutine p〈σ ,z := v; t〉. Doing the

corresponding weak step P
τ
−→w P′ yields

P′ = νm (p〈σ ′, t〉 ‖ m(|z:=v|))

where σ ′ = (E ′hb,E
′
s). Since m is a fresh name, it is not mentioned in any shadow

set of any thread, in particular m /∈ E ′s. Consequently, S′ and P′ satisfy the con-

dition from equation (A.2) for variable z. The condition holds for the remaining

shared variables as well: it was assumed to hold for S and P prior to the steps, and

write-steps do not affect variables other than z. Consequently, S′R P′ as required.

Case: R-READs: p〈let r = load z in t〉 ‖ (|z:=v|)
(z?v)
−−→s p〈let r = v in t〉 ‖ (|z:=v|)

SR P implies that P contains p〈( ,Es),z := v; t〉 and write events m(|z:=v|) (there

may be more than one for z and v, but with different identifiers); specifically con-

dition (A.2) guarantees that there exists one m(|z:=v|) such that m /∈ Es, which

enables R-READw for P such that P
(z?v)
−−→w P′ with S′ R P′, as required.

The remaining cases are analogous or simpler, establishing that R is a sim-

ulation relation. It is immediate that the corresponding initial configurations are

related, i.e., S0 R P0. Thus P0 & S0, which concludes the proof. ⊓⊔

B. Proofs via a weak semantics augmented with read and write events

This section contains supplementary material and proofs for the lemmas of

Section 6. In particular, the material here allows us to carry out the harder di-

rection of the simulation proof of Section 6.2, namely that the strong semantics

simulates the weak one for race-free programs.

We start in Section B.1 augmenting the weak semantics with additional infor-

mation which has no relevance aside from assisting the proofs. Section B.2 covers

properties of the augmented semantics.

B.1. Augmenting the weak semantics

This section presents an “alternative” representation of the weak semantics of

Section 5. The steps of the reformulation here are in one-to-one correspondence to

the previous ones, with the difference that now, more information is stored as part

of the configurations. In particular, the weak semantics from Section 5 makes use

of write events as part of configurations. Read steps, however, were not treated the

same way. The variant semantics augments the weak one by: 1) recording read

53



events in addition to write events, and 2) storing in the read and write events the

local state σ of the issuing thread at the point in time the read/write step was taken.

The configurations introduced in equation (6) on page 18 are therefore adapted to

contain events of the following form:

m(|σ ,z := v|)p and m[(σ ,?z)]p , (B.1)

where m(|σ ,z := v|)p are write events augmented with the local state σ and identity

p of the issuing thread and m[(σ ,?z)]p are read events augmented analogously.

Notation B.1 (Events) We use e for events and r and w for read and write events

specifically. For two different events, we generally assume that their identities

are different. It is an invariant of the semantics that the labeling of the events

are indeed unique. Furthermore, let e be an event with identifier m and referring

to variable z. Instead of writing m ∈ Es for some shadowed set Es, we allow

ourselves to write e ∈ Es. Similarly, we write more succinctly e ∈ Ehb instead of

(m,z) ∈ Ehb.

From the rules of Figure 11, only the read and write steps require adaptation.

See Figure B.22 for the augmented rules, which behave exactly as the originals ex-

cept that the steps now record additional information as part of the configuration.

σ = (Ehb,Es) σ ′ = (Ehb +(m,z),Es +Ehb(z)) fresh(m)
R-WRITEσ

p〈σ ,z := v; t〉 −→ νm (p〈σ ′, t〉 ‖ m(|σ ,z := v|)p)

σ = ( ,Es) m /∈ Es fresh(m′)
R-READσ

p〈σ ,let r = load z in t〉 ‖ m(| ,z := v|) −→

νm′ (p〈σ ,let r = v in t〉 ‖ m(| ,z := v|) ‖ m′[(σ ,?z)]p)

Figure B.22: Operational semantics: Read/write rules with augmented read/write events

The augmentation of the rules yield an operational semantics that is obviously

equivalent to the one from Section 5: It is easy to envision the simulation relation

as a function from the augmented semantics to the weak semantics (the function

simply removes the augmented information). This augmented semantics, how-

ever, allows us to prove the lemmas of Section 6.

54



B.2. Additional concepts and lemmas

In the following, we use −→w, −→∗w, etc., when referring to the steps of the

augmented weak semantics, which we will, from now on, refer to simply as the

“weak semantics” (unless stated otherwise).

We define three binary relations between events given the augmented read

and write events. First, the happens-before relation, which can now be gathered

from the augmented event information. Events are considered concurrent if un-

ordered by the happens-before relation. Combinations of read-write resp. write-

write events are in conflict if they are concurrent and concern the same variable.

These definitions generalize Definition 6.3 from the main part of the paper.

Definition B.2 (Binary relations on events) Let e1 and e2 be two different events,

with E2
hb the happens-before set of e2 and m1 the identity of e1.

1. e1 happens-before e2, written e1→hb e2, if m1 ∈ E2
hb.

2. e1 and e2 are concurrent, written e1 9e2, if neither e1→hb e2 nor e2→hb e1.

3. e1 and e2 are in conflict, written e1#e2, iff e1 9 e2, both event concern the

same variable, and one of the events is a write.

We denote read/write conflicts as #rw and write/write as #ww. We also say that

a configuration contains a conflict if it contains two different events which are in

conflict. Note that we need the augmented notion of configurations to obtain this

definition; the original notion of weak configuration contains not enough informa-

tion to “detect” conflicts (not to mention, that read events were not even recorded).

Note that the definition of →hb is slightly asymmetric: only the happens-before

information from e2 is relevant when defining e1→hb e2 (as e1 does not have in-

formation about events that “happen-after”). See also Lemma B.3, stating that

→hb is a partial order.

Lemma B.3 (Simple properties of event relations)

• # and 9 are symmetric, irreflexive by definition, but not transitive.

• #ww is not transitive.

Furthermore, all reachable configurations we have the following invariants:

• →hb is a strict partial order (i.e., acyclic, transitive, and irreflexive).

• Assume two events e1 and e3 with p1 the issuing process of e1 and p2 the

one of e2. Then e1 9 e2 implies p1 6= p2.

55



PROOF. # and 9 are symmetric by definition. The invariants are proven by straight-

forward induction on the steps of the operational semantics. ⊓⊔

Finally, we define the notion of write events being observable by read-events.

This again is a generalization of the corresponding notion of write events begin

observable by processes from Definition 6.3. A write event is observable by a

read event unless it is either “shadowed,” i.e., it is mentioned in the shadow set of

the read event, or the write event “happens-after” the read event, i.e., the write-

event mentions the read-event in its happens-before set. The two conditions for

observability correspond directly to the formulation in the informal description of

the happens-before memory model [20].

Definition B.4 (Observable writes by a read event) Assume two events on the

same variable z: one being a read event r with shadow set Er
s and the other a

write event with happens-before set Ew
hb. The write event w on z is observable by

the read event r on z, written w→z
o r, if

1. w /∈ Er
s and

2. r /∈ Ew
hb.

We also write w→o r if the variable which “connects” the events needs no men-

tion. With this, we can define

W o
P (z@r) = {w ∈ P | w→z

o r}

as the set of write-events observable by the read event r in a given (augmented)

configuration P. This is analogous to the set of write events W o
P (z@p) observable

by process p (see Definition 6.3). Note, however, that the transition-based defini-

tion from Section 6.2 does not include condition (2) from Definition B.4. Even if

the two definitions differ concerning that condition, they are intuitively capturing

the same concept: In the earlier Definition 6.3, the observability referred to a read-

event r just about to occur, namely being executed by a process. Thus, there was

no need to mention write events for which r→hb w would hold, as they could not

be part of the configuration at that point. Definition B.4 of observability by read

events in the augmented semantics takes into account “historic” read events and

therefore, condition (2) is needed as old read events cannot observe writes that are

guaranteed to have occurred in the future (according to the happens-before rela-

tion). Write-events that just coincidentally were issued in a later reduction step

but otherwise unordered via the happens-before relation may well be observable

by such a read event.

56



We now make the informal definition of race from the discussion in page 29

precise. There we said a race is a situation in which two different threads access

the same shared variable, at least one of the accesses is a write, and the accesses

are not ordered by the happens-before relation. In light of the augmentation done

to the weak semantics, this definition can easily be made precise.

Definition B.5 (Data race) Let P be a reachable configuration in the augmented

semantics. P has a r/w-race iff P−→∗w P′ with P′ containing a r/w-conflict. Analo-

gously for w/w-races resp. w/w-conflicts.

B.2.1. General invariant properties

See also Section 6.2.1 in the main part.

Lemma B.6 (Invariants) For all reachable configurations, we have the following

invariants.

1. For all events e resp. processes with local state (Ehb,Es), Es ⊂ Ehb(z).

2. w9 r implies w→o r.

3. For each read event r, there exists a write event w with w→o r and not w9r.

4. For each read event r, there exists a write event w with w→o r and w→hb r.

PROOF. Part 3 or alternatively part 4 is used in the proof of Lemma B.9. By

straightforward induction. ⊓⊔

PROOF OF THE INVARIANTS LEMMA 6.4. A straightforward consequence of the

corresponding property for read and write events of the augmented semantics from

Lemma B.6. ⊓⊔

PROOF OF LEMMA 6.5 (“CONSENSUS POSSIBLE”). The property holds for an

initial configuration P0 because:

• it contains one write event for each shared variable and

• the initial process’s shadowed set is empty.

Therefore, every process observe, for each variable, the same initial value. As-

suming W o
Pi
(z@p) 6= /0 where P0 −→

∗
w Pi then, for each possible step that Pi can take

we argue as follows:

57



Case: Congruence, local steps, R-READ, R-MAKE, R-CLOSE, and R-GO

None of the rules modify WP. In addition, congruence, local steps, R-READ,

R-MAKE and R-CLOSE do not alter thread-local states, which means that shad-

owed sets are unchanged. R-GO creates a new goroutine that inherits the thread-

local state of the parent.

Case: R-WRITE

R-WRITE adds a fresh write event, which, by definition, is not in the shadowed

set of any process and, therefore, is in
⋂

p∈Pi+1
W o

Pi+1
(z@p).

Case: R-SEND

Let Es be the sender’s shadowed set at Pi. According to the definition of R-SEND,

the sender’s shadowed set at Pi+1 is Es∪E ′′s where E ′′s is the shadowed set of some

thread in a configuration Pj where j < i. By the induction hypothesis, there exists

a write event m that is not in any process’s shadowed set at Pi. Since shadowed sets

are monotonically increasing, m /∈E ′′s . Since m /∈Es and m /∈E ′′s , then m /∈Es∪E ′′s .

This means m is not in the sender’s shadowed set at Pi+1, which, coupled with the

fact that no other threads’ shadowed set are modified by the R-SEND rule, we

have that
⋂

p∈Pi+1
W o

Pi+1
(z@p).

Case: R-REC, R-REC⊥

Analogous to R-SEND.

Case: R-REND

Let Es and E ′s be the sender’s and receiver’s shadowed sets at Pi. By the induction

hypothesis, there exists a write event m that is not in any process’s shadowed set

at Pi; therefore, m /∈ Es and m /∈ E ′s in specific. By the definition of R-REND, the

sender’s and receiver’s shadowed sets at Pi+1 is Es∪E ′s. Since m /∈ Es and m /∈ E ′s,

then m /∈ Es∪E ′s. Finally, since at Pi+1 the sender’s and receiver’s shadowed sets

do not contain m, and since no other threads’ shadowed set were modified in the

transition Pi −→ Pi+1, we have that
⋂

p∈Pi+1
W o

Pi+1
(z@p). ⊓⊔

The next lemma expresses a property concerning observability and conflicts.

Each read event may well observe more than one write-event; this corresponds to

the situation where a read step yields a non-deterministic result. The lemma estab-

lishes that this ambiguity in observability is a symptom of conflicts. As the notion

of conflicting events in the augmented weak semantics is in close correspondence

with the notion of races (as established in Definition 7), the lemma implies that

for race-free programs, there is no ambiguity when observing write events.

58



Lemma B.7 (Observability and conflicts) The weak semantics has the follow-

ing invariant: If w1 →
x
o r←x

o w2 for two different write events w1 and w2, then

w1#xw2 or w1#xr or w2#xr.

PROOF. By straightforward induction on the steps of the (augmented) weak se-

mantics. ⊓⊔

Note that the fact that two write events w1 and w2 are observable by a read

event does not imply that w1#w2. It may well be the case that w1→hb w2 and both

are concurrent wrt. the read event. If, in particular w1 →hb w2, w1 →hb r, and

w2 9 r, then w2#r but w1 is not in conflict with any of the other two events.

B.2.2. Race-free resp. conflict-free reductions

See also Section 6.2.2 in the main part of the paper.

Lemma B.8 (Uniqueness of observability) Let P be a reachable, conflict-free

configuration in the augmented semantics. If P is race-free and P −→∗w P′, then

for all events in P′ and all variables z we have

|{w | r←z
o w}| ≤ 1 (B.2)

PROOF. Assume for a contradiction that there exists in P′ two different write

events w1 and w2 for some variable and some read event such that w1→o r and

w2 →o r. By Lemma B.7, this implies that P′ contains at least two conflicting

events. With Definition 7, the existence of conflicting events contradicts the as-

sumption of race-freedom, which concludes the proof. ⊓⊔

Corollary B.9 Let P, P′ and z be given as in Lemma B.8. Then we have

|{w | r←z
o w}|= 1 . (B.3)

PROOF. A direct consequence of B.8 and of Lemma B.6(3) (or alternatively of

Lemma B.6(4)). ⊓⊔

PROOF OF LEMMA 6.6 (NO CONCURRENT WRITE WHEN IT COUNTS). A direct

consequence of the equivalence of races and conflicts from Definition 7. Assume

for a contradiction P
(z?)p
−−→w P′ and W

9
P (z@p) 6= /0. Then P′ contains two events r

and w with r#w. With Definition 7, this contradicts the assumption that P0 has no

r/w race. The case for w/w races is analogous. ⊓⊔

59



Lemma B.10 (Unique observability when it counts) Assume P0 −→
∗
w P with P0

race-free. If P
(z?)p
−−→w or P

(z!)p
−−→w, then

W o
P (z@p) = {m} . (B.4)

PROOF. For the write step: assume that there are two different observable writes

w1 and w2. By Lemma 4, W
9
P (z@p) = /0. By Definition 6.3, that means all observ-

able writes are in happens-before relation, i.e., W o
P (z@p) =W hb

P (z@p). In partic-

ular, both w1 and w2 are in happens-before relation to process p at that point. For

the case w1→hb w2, w1 is unobservable by p, contradicting the assumption (the

case w2→hb w1 is symmetric). Remains the case where w1 and w2 are unordered

by →hb, in other words, w1 ‖ w2, which implies w1#w2. With Definition , that

contradicts the assumption of race-freedom. The case for a read-step is analogous

(alternatively it follows from Lemma B.8). ⊓⊔

As an easy consequence, we obtain the following consensus lemma:

PROOF OF LEMMA 6.7 (“RACE-FREE CONSENSUS WHEN IT COUNTS”). A direct

consequence of unique observability from Lemma B.10 and the possible consen-

sus property from Lemma 6.5. ⊓⊔

PROOF (OF COROLLARY 6.8). A direct consequence of the consensus Lemma 6.7.

⊓⊔

The next property is central for the guarantees of the weak semantics. It states

that, under the assumption of race freedom, at each point in time each variable

has exactly one “real” value. In other words, for each variable, there is exactly

one write commonly observable across all processes. If one would focus on one

particular process (or a proper subset as opposed to all processes as the lemma

does), then the set of observable writes may be larger than one. If a process

or a set of processes are in a situation where there is more than one observable

write, it simply means that those process will not do any observations until this

nondeterminism is resolved. Doing a read-step in this situation would contradict

the assumption of race-freedom (see Lemma 6.7).

Note that the configurations in the weak semantics do not contain any explicit

information which marks a particular write event as “the” value (also not in the

augmented weak semantics). Having a consensus value is not a feature of the

semantics per se; instead, it hinges on the assumption that the program being

executed is race-free.

60



Indeed, the existence of exactly one unique consensus value is the core of the

SC-DRF guarantee (i.e., in the absence of data races, the weak semantics behaves

like the strong, sequentially consistent one). More technically, when establishing

the connection between the strong and the weak semantics, relating the weak and

the strong configurations obviously will make the “consensus” value of the weak

semantics the one used in the strong one. Without the race-free consensus lemma,

the construction would not be well-defined: the erasure ⌊ ⌋ from Definition 6.11

would not be a function, resp. would not yield well-formed strong configurations.

PROOF OF LEMMA 6.9 (RACE-FREE CONSENSUS). By straightforward induction

on the steps of the operational semantics. The property clearly holds for any ini-

tial configuration. The crucial case is when writing to a variable. So, assume

P
(z!)p
−−→w P′. By Lemma 6.6(1), there are no concurrent writes for p before the

step, i.e., W
9
P (z@p) = /0. By Definition 6.3, that means all observable writes are

in happens-before relation, i.e., W o
P (z@p)=W hb

P (z@p).12 Consequently, after the
(z!)p
−−→w step of the weak semantics, all those observable write events are shadowed

for p in P′, thereby becoming unobservable by p. As a result, the only write-event

observable by p is the one just executed by step P
(z!)p
−−→w P′. This is a new write

event in P with a fresh identity, say, m′, which consequently is not mentioned in

the shadow set of any process. Therefore,
⋂

pi∈P′W
o
P (z@pi) = {m

′}, establishing

the invariant for the post-configuration P′. ⊓⊔

12One could establish that there is exactly one such event, but it is not needed for the proof. The

important property here is that there are no concurrent observable writes.

61


	Introduction
	Background
	Go's memory model
	Happens-before relation and observability


	Abstract syntax
	Strong operational semantics
	Configurations
	Local steps
	Global steps
	Reads and writes to shared memory
	Channel communication
	Thread creation and select statement

	Example

	Weak operational semantics
	Local states, events, and configurations
	Local steps
	Global steps
	Reads and writes to shared memory
	Channel communication
	Select statement
	Thread creation

	Example

	Relating the strong and the weak semantics
	The weak semantics simulates the strong
	The strong semantics conditionally simulates the weak one
	General invariant properties
	Race-free reductions


	Implementation
	Discussion
	Limitations and future work
	Related work
	Conclusion
	The weak semantics simulates the strong
	Proofs via a weak semantics augmented with read and write events
	Augmenting the weak semantics
	Additional concepts and lemmas
	General invariant properties
	Race-free resp. conflict-free reductions



