
Operational Semantics of a Weak Memory Model
with Channel Synchronization

Daniel Schnetzer Fava,1 Martin Steffen1 and Volker Stolz1,2

1 Dept. of Informatics, University of Oslo
2 Western Norway University of Applied Sciences

Abstract. A multitude of weak memory models exists supporting various types
of relaxations and different synchronization primitives. On one hand, such models
must be lax enough to account for hardware and compiler optimizations; on the
other, the more lax the model, the harder it is to understand and program for.
Though the right balance is up for debate, a memory model should provide what
is known as the SC-DRF guarantee, meaning that data-race free programs behave
in a sequentially consistent manner.
We present a weak memory model for a calculus inspired by the Go program-
ming language. Thus, different from previous approaches, we focus on a memory
model with buffered channel communication as the sole synchronization primi-
tive. We formalize our model via an operational semantics, which allows us to
prove the SC-DRF guarantee using a standard simulation technique. Contrasting
against an axiomatic semantics, where the notion of a program is abstracted away
as a graph with memory events as nodes, we believe our semantics and simula-
tion proof can be clearer and easier to understand. Finally, we provide a concrete
implementation in K, a rewrite-based executable semantic framework, and derive
an interpreter for the proposed language.

1 Introduction

A memory model dictates which values may be observed when reading from memory,
thereby affecting how concurrent processes communicate through shared memory. One
of the simplest memory models, called sequentially consistent, stipulates that opera-
tions must appear to execute one at a time and in program order [25]. SC was one of
the first formalizations to be proposed and, to this day, constitutes a baseline for well-
behaved memory. However, for efficiency reasons, modern hardware architectures do
not guarantee sequential consistency. SC is also considered much too strong to serve
as the underlying memory semantics of programming languages; the reason being that
sequential consistency prevents many established compiler optimizations and robs from
the compiler writer the chance to exploit the underlying hardware for efficient parallel
execution. The research community, however, has not been able to agree on exactly
what a proper memory model should offer. Consequently, a bewildering array of weak
or relaxed memory models have been proposed, investigated, and implemented. Differ-
ent taxonomies and catalogs of so-called litmus tests, which highlight specific aspects
of memory models, have also been researched [1].

Memory models are often defined axiomatically, meaning via a set of rules that con-
strain the order in which memory events are allowed to occur. The candidate execution

approach falls in this category [6]. These formalizations are not without controversy.
For example, despite many attempts, there does not exist an well-accepted comprehen-
sive specification of the C++11 [7, 8] or Java memory models [5, 27, 34]. Luckily, more
recently, one fundamental principle of relaxed memory has emerged, namely: no matter
how much relaxation is permitted by a memory model, if a program is data-race free
or properly synchronized, then the program must behave in a sequentially consistent
manner [2, 27]. This is known as the SC-DRF guarantee.

We present an operational semantics for a weak memory. Similar to Boudol and
Petri [10], we favor an operational semantics because it allows us to prove the SC-DRF
guarantee using a standard simulation technique. Compared to axiomatic semantics in
which the notion of a program is abstracted away (often in the form of a graph with
nodes as memory events), we think that our formalism leads to an easier to understand
proof of the SC-DRF guarantee. The lemmas we build up in the process of construct-
ing the proof highlight meaningful invariants and give insight into the workings of the
memory model.

Our calculus is inspired by the Go programming language: similar to Go, our model
focuses on channel communication as the main synchronization primitive. Go’s mem-
ory model, however, is described, albeit succinctly and precisely, in prose [18]. we
provide a formal semantics instead.

The main contributions of our work are:

– There are few studies on channel communication as synchronization primitive for
weak memory. We give an operational theory for a weak memory with bounded
channel communication by leveraging thread-local happens-before information.

– We prove that the proposed memory upholds the sequential consistency guarantee
for data-race free programs using a standard conditional simulation proof.

– We implement the operational semantics in the K executable semantics framework
[22, 35] and make the source code publicly available via a git-repository [14].

The remaining of the paper is organized as follows. Section 2 presents background
information directly related to the formalization of our memory model. Sections 3 and 4
provide the syntax and the semantics of the calculus with relaxed memory and channel
communication. Section 6 establishes the SC-DRF guarantee. Sections 7 and 8 conclude
with related and future work.

2 Background

Go’s memory model. The Go language [17, 13] recently gained traction in network-
ing applications, web servers, distributed software and the like. It prominently features
goroutines, that is, asynchronous execution of function calls resembling lightweight
threads, and buffered channel communication in the tradition of CSP [20] (resp. the π-
calculus [30]) or Occam [21]. While encouraging message passing as the prime mecha-
nism for communication and synchronization, threads can still exchange data via shared
variables. Consequently, Go’s specification includes a memory model which spells out,
in precise but informal English, the few rules governing memory interaction at the lan-
guage level [18].

2

https://github.com/dfava/mmgo

Concerning synchronization primitives, the model covers goroutine creation and de-
struction, channel communication, locks, and the once-statement. Our semantics will
concentrate on thread creation and channel communication because lock-handling and
the once statement are not language primitives but part of the sync-library. Thread de-
struction, i.e. termination, comes with no guarantees concerning visibility: it involves no
synchronization and thus the semantics does not treat thread termination in any special
way. In that sense, our semantics treats all of the primitives covered by Go’s memory
model specification. As will become clear in the next sections, our semantics does not,
however, relax read events. Therefore, our memory model is stronger than Go’s. On the
plus side, this prevents a class of undesirable behavior called out-of-thin-air [9]. On the
negative, the absence of relaxed reads comes at the expense of some forms of compiler
optimizations.

Languages like Java and C++ go to great lengths not only to offer the crucial SC-
DRF guarantee for well-synchronized programs, but beyond that, strive to clarify the re-
sulting non-SC behavior when the program is ill-synchronized. This involves ruling out
definitely unwelcome behavior. Doing this precisely, however, is far from trivial. One
class of unwanted behavior that is particularly troublesome is the so called out-of-thin-
air behavior [9]. In contrast, Go’s memory model is rather “laid back.” Its specification
[18] does not even mention “out-of-thin-air” behavior.

Happens-before relation and observability. Like Java’s [27, 34], C++11’s [7, 8], and
many other memory models, ours centers around the definition of a happens-before
relation. The concept dates back to 1978 [24] and was introduced in a pure message-
passing setting, i.e., without shared variables. The relation is a technical vehicle for
defining the semantics of memory models. It is important to note that just because an
instruction or event is in a happens-before relation with a second one, it does not neces-
sarily mean that the first instruction actually “happens” before the second in the oper-
ational semantics. Consider the sequence of assignments x := 1;y := 2 as an example.
The first assignment “happens-before” the second as they are in program order, but it
does not mean the first instruction is actually “done” before the second,3 and especially,
it does not mean that the effect of the two writes become observable in the given order.
For example, a compiler might choose to change the order of the two instructions. Al-
ternatively, a processor may rearrange memory instructions so that their effect may not
be visible in program order. Conversely, the fact that two events happen to occur one
after the other in a particular schedule does not imply that they are in happens-before
relationship, as the order may be coincidental. To avoid confusion between the techni-
cal happens-before relation and our understanding of what happens when the programs
runs, we speak of event e1 “happens-before” e2 in reference to the technical definition
(also abbreviated as e1→hb e2 in this section) as opposed to its natural language inter-
pretation. Also, when speaking about steps and events in the operational semantics, we
avoid talking about something happening before something else, and rather say that a
step or transition “occurs” in a particular order.

3 Assuming that x and y are not aliases in the sense that they refer to the same or “overlapping”
memory locations.

3

Listing (1.1) Erroneous synchronization
1 var a s t r i n g
2 var done bool
3

4 func s e t u p () {
5 a = ” h e l l o , wor ld ”
6 done = t rue
7 }
8

9 func main () {
10 go s e t u p ()
11 f o r ! done { } / / t r y w a i t i n g
12 p r i n t (a)
13 }

Listing (1.2) Channel synchronization
var a s t r i n g
var c = make (chan i n t , 10)

func s e t u p () {
a = ” h e l l o , wor ld ”
c <− 0 / / send

}

func main () {
go s e t u p ()
<−c / / r e c e i v e
p r i n t (a)

}

Fig. 1: Synchronization via channel communication [18]

The happens-before relation regulates observability, and it does so very liberally. It
allows a read r from a shared variable to possibly observe a particular write w to said
variable unless one of the following two conditions hold:

r→hb w or (1)
w→hb w′→hb r for some other write w′ to the same variable. (2)

For the sake of discussion, let’s concentrate on the following two constituents for the
happens-before relation: 1) program order and 2) the order stemming from channel
communication. According to the Go memory model [18], we have the following con-
straints related to a channel c with capacity k:

A send on c happens-before the corresponding receive from c completes. (3)
The ith receive from c happens-before the (i+ k)th send on c. (4)

To illustrate, consider the example on Listing 1.1. The main function spawns an asyn-
chronous execution of setup, at which point main and setup can run concurrently.
In the thread or goroutine executing setup, the write to variable a happens-before the
write to done, as they are in program order. For the same reason, the read(s) of done
happen-before the read of a in the main thread. Without synchronization, the variable
accesses are ordered locally per thread but not across threads. Since neither condi-
tion (1) or (2) applies, the main procedure may or may not observe writes performed by
setup; it is possible for main to observe the initial value of a instead. This makes the
writes to a and done performed by setup to potentially appear out-of-order from the
main thread’s perspective.

Replacing the use of done by channel synchronization properly synchronizes the
two functions (cf. Listing 1.2). As the receive happens-after the send, an order is estab-
lished between events belonging to the two threads. One can think of the main thread as
receiving not only a value but also the knowledge that the write event to a in setup has
taken place. With condition (3), channels implicitly communicate the happens-before
relation from the sender to the receiver. Then, with condition (2), we can conclude that

4

once main receives a message from setup, the initial value of a is no longer observable
from main’s perspective.

Condition (4) is not shown in the example. This condition accounts for the bounded-
ness of channels by transmitting happens-before information in the backward direction
for some receiver to some sender. For synchronous channels, where k = 0, the two
threads participating in the rendezvous symmetrically exchange their happens-before
information.

In summary, the operational semantics captures the following principles:

Immediate positive information: a write is globally observable instantaneously.
Delayed negative information: in contrast, negative information overwriting previ-

ously observable writes is not immediately effective. Referring back to the example
of Figure 1, the fact that setup has overwritten the initial value of variable a is not
immediately available to other threads. Instead, the information is spread via mes-
sage passing in the following way:
Causality: information regarding condition (3) travels with data through channels.
Channel capacity: backward channels are used to account for condition (4).

Local view: Each thread maintains a local view on the happens-before relationship of
past write events, i.e. which events are unobservable. Thus, the semantics does not
offer multi-copy atomicity.

3 Abstract syntax

The abstract syntax of the calculus is given in Table 1. Values v can be of two forms: r
is used to denote the value of local variables or registers, while n in used to denote ref-
erences or names in general and, in specific, c for channel names. We do not explicitly
list values such as the unit value, booleans, integers, etc. We also omit compound local
expressions like r1 + r2. Shared variables are denoted by x, z etc, load z represents the
reading the shared variable z into the thread, and z := v denotes writing to z.

References are dynamically created and are, therefore, part of the run-time syntax.
Run-time syntax is highlighted with an underline as n in the grammar. A new channel
is created by make (chan T,v) where T represents the type of values carried by the
channel and v a non-negative integer specifying the channel’s capacity. Sending a value
over a channel and receiving a value as input from a channel are written respectively
as v1 ← v2 and ← v. After the operation close, no further values can be sent on the
specified channel. Attempting to send values on a closed channel leads to a panic.

Starting a new asynchronous activity, called goroutine in Go, is done using the go-
keyword. In Go, the go-statement is applied to function calls only. We omit function
calls, asynchronous or otherwise, since they are orthogonal to the memory model’s
formalization. See Steffen [36] for an operational semantics dealing with goroutines
and closures in a purely functional setting, that is, without shared memory.

The select-statement, here written using the ∑-symbol, consists of a finite set of
branches which are called communication clauses by the Go specification [17]. These
branches act as guarded threads. General expressions in Go can serve as guards. Our
calculus, however, imposes the restriction that only communication statements (i.e.,
channel sending and receiving) and the default-keyword can serve as guards. This

5

v ::= r | n values
e ::= t | v | load z | z := v | if v then t else t | go t expressions
| make (chan T,v) | ← v | v← v | close v

g ::= v← v | ← v | default guards
t ::= let r = e in t | ∑i let ri = gi in ti threads

Table 1: Abstract syntax

restriction is in line with the A-normal form representation and does not impose any
actual reduction in expressivity. Both in Go and in our formalization, there is at most
one branch guarded by default in each select-statement. The same channel can be
mentioned in more than one guard. “Mixed choices” [31, 32] are also allowed, meaning
that sending and receiving guards can both be used in the same select-statement. We
use stop as syntactic sugar for the empty select statement; it represents a permanently
blocked thread. The stop-thread is also the only way to syntactically “terminate” a
thread, meaning that it is the only element of t without syntactic sub-terms.

The let-construct let r = e in t combines sequential composition and the use of
scopes for local variables r: after evaluating e, the rest t is evaluated where the resulting
value of e is handed over using r. The let-construct is seen as a binder for variable r in
t. When r does not occur free in t, let then boils down to sequential composition and,
therefore, is replaced by a semicolon.

4 Operational semantics

In this section we define the operational semantics of the calculus. We fix the run-time
configurations of a program before giving the operational rules in Section 4.2.

4.1 Local states, events, and configurations

Let X represent a set of shared variables such as x, z . . . and let N represent an infinite
set of names or identifiers with typical elements n, n′2 . . . As mentioned earlier, for read-
ability, we will use names like c, c1, . . . for channels, and p, p′1 . . . for goroutines or
processes. A run-time configuration is then given by the following syntax:

P ::= n〈σ , t〉 | n(|z:=v|) | n[q] | • | P ‖ P | νn P . (5)

Configurations consist of the parallel composition of goroutines p〈σ , t〉, write events
n(|z:=v|), and channels c[q]; • represents the empty configuration. The ν-binder, known
from the π-calculus, indicates dynamic scoping [30]. Goroutines or processes p〈σ , t〉
contain, besides the code t to be executed, a local view σ = (Ehb,Es) detailing the ob-
servability of write events from the perspective of p. Local observability is formulated
“negatively,” meaning that all write events are observable by default. It is possible for
an event to no longer be visible from a thread’s perspective; such events are called

6

let x = v in t t[v/x] R-RED

let x1 = (let x2 = e in t1) in t2 let x2 = e in (let x1 = t1 in t2) R-LET

if true then t1 else t2 t1 R-COND1 if false then t1 else t2 t2 R-COND2

Table 2: Operational semantics: Local steps

shadowed and are tracked in σ , specifically in Es. Note that, in order to properly up-
date the list of shadowed events, σ must also contain thread-local information about the
“happens-before” relationship between write events. This information is kept in Ehb.

Definition 1 (Local state). A local state σ is a tuple of type 2(N×X)× 2N . We use the
notation (Ehb,Es) to refer to the tuples and abbreviate their type by Σ . Let’s further-
more denote by Ehb(z) the set {n | (n,z) ∈ Ehb}. We write σ⊥ for the local state (/0, /0)
containing neither happens-before nor shadow information.

4.2 Reduction steps

The operational semantics is given in several stages. We start with local steps, that is,
steps not involving shared variables.

4.2.1 Local steps The reduction steps are given modulo structural congruence ≡ on
configurations. The congruence rules are standard and thus omitted here (see the report
[15] for details). Local steps (cf. Table 2) reduce a thread t without touching shared
variables, and t1 t2 implies 〈σ , t1〉 −→ 〈σ , t2〉.

4.2.2 Global steps Writing a value records the corresponding event n(|z:=v|) in the
global configuration, with n freshly generated (cf. rule R-WRITE). The write events are
remembered without keeping track of the order of their issuance. Therefore, as far as
the global configuration is concerned, no write event ever invalidates an “earlier” write
event or overwrites a previous value in a shared variable. Instead, the global config-
uration accumulates the “positive” information about all available write events which
potentially can be observed by reading from shared memory.

The local state σ of a goroutine captures which events are actually observable from
a thread-local perspective. Its primary function is to contain “negative” information: A
read can observe all write events except for those shadowed, that is, write events whose
identifiers are contained in Es (see rule R-READ). In addition, the local state keeps
track of write events that are thread-locally known to have happened-before. These are
stored in Ehb. So, issuing a write command (rule R-WRITE) with a write event labeled
n updates the local Ehb by adding (n,z). Additionally, it marks all previous writes to the
variable z as shadowed, thus enlarging Es.

7

σ = (Ehb,Es) σ ′ = (Ehb +(n,z),Es +Ehb(z)) fresh(n)
R-WRITE

p〈σ ,z := v; t〉 −→ νn (p〈σ ′, t〉 ‖ n(|z:=v|))

σ = (,Es) n /∈ Es
R-READ

p〈σ ,let r = load z in t〉 ‖ n(|z:=v|) −→ p〈σ ,let r = v in t〉 ‖ n(|z:=v|)

q = [σ⊥, . . . ,σ⊥] |q|= v fresh(c)
R-MAKE

p〈σ ,let r = make (chan T,v) in t〉 −→ νc (p〈σ ,let r = c in t〉 ‖ c f [] ‖ cb[q])

¬closed(c f [q2]) σ ′ = σ +σ ′′
R-SEND

cb[q1 :: σ
′′] ‖ p〈σ ,c← v; t〉 ‖ c f [q2] −→ cb[q1] ‖ p〈σ ′, t〉 ‖ c f [(v,σ) :: q2]

v 6=⊥ σ ′ = σ +σ ′′
R-REC

cb[q1] ‖ p〈σ ,let r =← c in t〉 ‖ c f [q2 :: (v,σ ′′)] −→
cb[σ :: q1] ‖ p〈σ ′,let r = v in t〉 ‖ c f [q2]

σ ′ = σ +σ ′′
R-REC⊥

p〈σ ,let r =← c in t〉 ‖ c f [(⊥,σ ′′)] −→ p〈σ ′,let r =⊥ in t〉 ‖ c f [(⊥,σ ′′)]

σ ′ = σ1 +σ2
R-SEND-REC

cb[] ‖ p1〈σ1,c← v; t〉 ‖ p2〈σ2,let r =← c in t2〉 ‖ c f [] −→
cb[] ‖ p1〈σ ′, t〉 ‖ p2〈σ ′,let r = v in t2〉 ‖ c f []

¬closed(c f [q])
R-CLOSE

p〈σ ,close (c); t〉 ‖ c f [q] −→ p〈σ , t〉 ‖ c f [(⊥,σ) :: q]

fresh(p2)
R-GO

p1〈σ ,go t ′; t〉 −→ ν p2 (p1〈σ , t〉 ‖ p2〈σ , t ′〉)

Table 3: Operational semantics: Global steps

Channels in Go are the primary mechanism for communication and synchroniza-
tion. They are typed and assure FIFO communication from a sender to a receiver shar-
ing a channel. Channels can be dynamically created and closed. Channels are bounded,
i.e., each channel has a finite capacity fixed upon creation. Channels of capacity 0 are
called synchronous. Our semantics largely ignores that channel values are typed and
that only values of an appropriate type can be communicated over a given channel.

Definition 2 (Channels). A channel is of the form c[q1,q2], where c is a name and
(q1,q2) a pair of queues. The first queue, q1, contains elements of type (Val× Σ) +
({⊥}×Σ), where⊥ is a distinct, separate value representing the “end-of-transmission”;
the second queue, q2, contains elements of type Σ . We write (v,σ), (⊥,σ) resp. (σ) for
the respective queue values. The queues are also referred to as forward resp. backward
queue. Furthermore, we use the following notational convention: We write c f [q] to refer

8

to the forward queue of the channel and cb[q] to the backward queue. We also speak of
the forward channel and the backward channel. We write [] for an empty queue, e :: q
for a queue with e as the element most recently added into q, and q :: e for the queue
where e is the element to be dequeued next. We denote with |q| the number of elements
in q. A channel is closed, written closed(c[q]), if q is of the form ⊥ :: q′. Note that it is
possible for a non-empty queue to be closed.

When creating a channel (cf. rule R-MAKE) the forward direction is initially empty
but the backward is not: it is initialized to a queue of length v corresponding to the chan-
nel’s capacity. The backward queue contains empty happens-before and shadow infor-
mation, represented by the elements σ⊥. The rule R-MAKE covers both synchronous
and asynchronous channels. An asynchronous channel is created with empty forward
c f [] and backward queue cb[].

Channels can be closed, after which no new values can be sent. Values “on transit”
in a channel when it is being closed are not discarded and can be received as normal.
The special value ⊥ indicates the end-of-transmission. Note that there is a difference
between an empty open channel c[] and an empty closed one c[⊥]. The value ⊥ is
relevant to the forward channel only. Rules R-SEND and R-REC govern asynchronous
channel communication while R-SEND-REC implements synchronous communication.
In an asynchronous send, a process places a value on the forward channel along with
its local state (provided the channel is not full, i.e., the backward queue is non-empty).
In the process of sending, the sender’s local state is updated with the knowledge that
the previous kth receive has completed; this is captured by σ ′ = σ +σ ′′ in the R-SEND
rule. To receive a value from a (non-empty) asynchronous channel (cf. rule R-REC),
the communicated value v is stored locally (in the rule, ultimately in variable r). Addi-
tionally, the local state of the receiver is updated by adding the previously sent local-
state information. Furthermore, the state of the receiver before the update is sent back
via the backward channel. In synchronous communication, the receiver obtains a value
from the sender and together they exchange local state information. The R-CLOSE rule
closes both sync and async channels. Executing a receive on a closed channel results
in receiving the end-of-transmission marker ⊥ (cf. rule R-REC⊥) and updating the lo-
cal state σ in the same way as when receiving a properly sent value. The “value”
⊥ is not removed from the queue, so that all clients attempting to receive from the
closed channel obtain the communicated happens-before synchronization information.
Furthermore, there is no need to communicate happens-before constraints from the re-
ceiver to a potential future sender on the closed channel: after all, the channel is closed.
Closing a channel resembles sending the special end-of-transmission value ⊥ (cf. rule
R-CLOSE). An already closed channel cannot be closed again. In Go, such an attempt
would raise a panic. Here, this is captured by the absence of enabled transitions.

Thread creation leads to a form of a synchronization where the spawned goroutine
inherits the local state of the parent (cf. rule R-GO). Finally, rules dealing with the
select statement are given in the accompanying report [15].

Starting from an initial weak configuration, as far as the sizes of the queues of a
channel in connection with the channel’s capacity are concerned, the semantics assures
the following invariant.

9

Definition 3 (Initial weak configuration). An initial weak configuration is of the form
ν~n (〈σ0, t0〉 ‖ n0(|z0:=v1|) ‖ . . . ‖ nk(|zk:=vk|)) where z0, . . .zk are all shared variables of
the program,~n represents n0, . . . ,nk, and σ0 =(E0

hb,E
0
s) where E0

hb = {(n0,z0), . . . ,(nk,zk)}
and E0

s = /0.

Lemma 4 (Invariant for channel queues). The following global invariant holds for a
channel c created with capacity k: |q f |+ |qb|− p = k. ut

5 Strong semantics

The strong semantics can be seen as a simpler version of the weak one. It represents a
standard interleaving semantics, i.e., write and reads immediately interact with a shared
global state. Therefore, there is no need for local thread information σ .

S ::= p〈t〉 | (|z:=v|) | • | S ‖ S | n[q] | νn P . (6)

Structural congruence ≡ and the local transition steps remain unchanged (cf.
Table 2). Apart from leaving out the events and other information, the only rules that
conceptually change are the ones for read and write. These are included on Table 4.

R-WRITE
p〈z := v; t〉 ‖ (|z:=v′|)−→ p〈t〉 ‖ (|z:=v|)

R-READ
p〈let r = load z in t〉 ‖ (|z:=v|)−→ p〈let r = v in t〉 ‖ (|z:=v|)

Table 4: Strong operational semantics: read and write steps

Definition 5 (Initial configuration). Initially, a strong configuration is of the form
p〈t0〉 ‖ (|z0:=v1|) ‖ . . . ‖ (|zk:=vk|), where z0, . . .zk are all shared variables of the pro-
gram and t0 contains no run-time syntax.

Cf. also the “weak” version from Definition 3.

Definition 6 (Well-formed strong configuration). An strong configuration S is well-
formed if, for every variable z ∈Vs, there exists exactly one write event (|z:=v|) in S. We
write `s S : ok for such well-formed configurations.

6 Relating the strong and the weak semantics

Let’s recall the definition of simulation [29] relating states of labeled transition systems.
The set of transition labels and the information carried by the labels may depend on the

10

specific steps or transitions done by a program and/or the observations one wishes to
attach to those steps. This leads to a distinction between internally and externally visible
steps. Let’s write α for arbitrary transition labels. Later we will use a for visible labels
and τ as the label of invisible or internal steps.

Definition 7 (Simulation). Assume two labeled transition systems over the same set of
labels and with state sets S and T . A binary relationR⊆ S×T is a simulation relation
between the two transition systems if s1

α−→ s2 and s1 R t1 implies t1
α−→ t2 for some state

t2. A state t simulates s, written t & s, if there exists a simulation relation R such that
sR t.

We use formulations like “s is simulated by t” interchangeably, and . as the corre-
sponding symbol. Also, we subscript the operational rules for disambiguation; for ex-
ample, R-READs refers to the strong version of the read while R-WRITEw to the weak
version of the write operation. The rules of the strong semantics are simplifications of
the weak rules given in Section 4.

The operational semantics is given as unlabeled global transitions −→. To estab-
lish the relationship between the strong and the weak semantics, we make the steps
of the operational semantics more “informative” by labeling them appropriately: For
read steps by rule R-READs and R-READw, when reading a value v from a variable z,

the corresponding step takes the form
(z?v)−−→. All other steps, −→ as well as steps, are

treated as invisible and noted as τ−→ in the simulation proofs. We make use of the follow-
ing “alternative” labeling for the purpose of defining races and for some of the technical
lemmas: we label write and read steps with the identity of the goroutine responsible for

the action and the affected shared variable, i.e.
p2(z!)−−−→ and

p2(z?)−−−→. Note that the identity
of the write event is omitted as well as the value exchanged; they will not be needed
in the proofs. We often use subscripts when distinguishing the strong from the weak
semantics; e.g.

p(z!)−−→w and
p(z!)−−→s.

6.1 The strong semantics conditionally simulates the weak one

That the weak semantics “contains” the sequentially consistent strong one as special
case, i.e., the weak semantics simulates the strong one, should be intuitively clear and
expected. Equally clear is that the opposite direction —the strong semantics simulates
the weak— does not hold in general. If a simulation relation would hold in both direc-
tions, the two semantics would be equivalent, thus obviating the whole point of a weak
or relaxed memory model.

Simulation of the weak semantics by the strong one can only be guaranteed “con-
ditionally.” The standard condition is that the program is “well-synchronized.” We take
that notion to represent the absence of data races, where a data race is a situation in
which two different threads have access to the same shared variable “simultaneously,”
with at least one of the accesses being a write.

Definition 8 (Data race). A well-formed configuration Si contains a manifest data

race if Si
p1(z!)−−−→s and Si

p2(z!)−−−→s for some p1 6= p2 (a manifest write-write race on z), or if

11

Si
p1(z?)−−−→s and Si

p2(z!)−−−→s (a manifest read-write race on z). We say a program S has a data
race if a manifest data race is reachable from the initial configuration S0.

Definition 9 (Data race). A well-formed configuration Si contains a manifest data
race if either hold:

Si
p1(z!)−−−→s and Si

p2(z!)−−−→s for some p1 6= p2 (manifest write-write race on z)

Si
p1(z?)−−−→s and Si

p2(z!)−−−→s (manifest read-write race on z)

We say a program S has a data race if a manifest data race is reachable from the initial
configuration S0.

The definition is used analogously for the weak semantics. We also say a program is
data-race free or properly synchronized if it does not have a data race.

Definition 10 (Observable and concurrent writes). Let WP stand for the set of all
write events n(|z:=v|) in a weak configuration P and let WP(z) stand for the set of iden-
tifiers of writes events to the variable z, i.e. WP(z) = {n | n(|z:=v|) ∈WP}. Given a well-
formed configuration P, the sets of writes that happens-before, that are concurrent, and
that are observable by process p for a variable z are defined as follows:

W hb
P (z@p) = Ehb(z@p) (7)

W 9
P (z@p) = WP(z)\Ehb(z@p) (8)

W o
P (z@p) = WP(z)\Es(z@p) . (9)

We also use notations like W o
P (@p) to denote the set of observable write events in P

for any shared variable.

6.1.1 General invariant properties

Lemma 11 (Invariants about write events). The weak semantics has the following
invariants.

1. For all local states (Ehb,Es) of all processes, Es ⊂ Ehb(z).
2. W 9

P (z@p)⊆W o
P (z@p).

3. W 9
P (z@p) 6=W o

P (z@p).
4. W hb

P (z@p)∩W o
P (z@p) 6= /0.

As W o
P (z@p) is a proper superset of W 9

P (z@p) (by part (2) and (3)), each thread can
observe at least one value held by a variable. This means, unsurprisingly, that no thread
will encounter an “undefined” variable. More interesting is the following generalization,
namely that at each point and for each variable, some value is jointly observable by
all processes. The property holds for arbitrary programs, race-free or not. Under the
assumption of race-freedom, we will later obtain a stronger “consensus” result: not only
is a consensus possible, but there is exactly one possible observable write, not more.

Lemma 12 (Consensus possible). Weak configurations obey the following invariant⋂
p∈P W o

P (z@p) 6= /0 . (10)

12

6.1.2 Race-free reductions Next, we present invariants that hold specifically for
race-free programs but not generally. They will be needed to define the relationship be-
tween the strong and weak semantics via a bisimulation relation. More concretely, the
following properties are ultimately needed to establish that the relationship connecting
the strong and the weak behavior of a program is well-defined.

Lemma 13 (No concurrent writes when it counts). Assume P0 −→∗w P where P0 is the
initial configuration derived from program P.

1. Assume P has no read-write race. If P
p(z?)−−→w, then W 9

P (z@p) = /0.

2. Assume P has no write-write race. If P
p(z!)−−→w, then W 9

P (z@p) = /0.

Lemma 14 (Race-free consensus when it counts). Assume P0−→∗w P with P0 race-free.

If P
p(z?)−−→w or P

p(z!)−−→w, then⋂
pi

W o
P (z@pi) = {n} , (11)

where the intersection ranges over an arbitrary set of processes which includes p.

Lemma 15 (Race-free consensus). Weak configurations for race-free programs obey
the following invariant⋂

pi∈P W o
P (z@pi) = {n} . (12)

Definition 16 (Well-formedness for race-free programs). A weak configuration P is
well-formed if

1. write-event references and channel references are unique, and
2. equation (12) from Lemma 15 holds.

We write `rf
w P : ok for well-formed configurations P.

We need to relate the weak and strong configurations via a simulation relation in
order to establish the connection between the race-free behaviors of the weak and strong
semantics. We will do so by the means of an erasure function from the weak to the
strong semantics.

Definition 17 (Erasure). The erasure of a well-formed weak configuration P, written
bPc, is defined as bPc /0 where bPcR is given on Table 5 and R is a set of write event
identifiers. On the queues q1 and q2 in the last case, the function simply jettisons the
σ -component in the queue elements.

Note that bPc is not necessarily a well-formed strong configuration. In particular,
bPc may contain two different write events (|z:=v1|) and (|z:=v2|) for the same variable.
Besides, it is not a priori clear whether bPc could remove all write events for a given
variable (thus leaving its value undefined) and the configuration ill-formed.

Lemma 18 (Erasure and congruence). P1 ≡ P2 implies bP1c ≡ bP2c.

13

b•cR = • (13)

bp〈σ , t〉cR = 〈t〉 (14)

bn(|z:=v|)cR =

{
• if n ∈ R
(|z:=v|) otherwise

(15)

bP1 ‖ P2cR = bP1cR ‖ bP2cR (16)

bνn PcR =

{
bPcR if ∀p ∈ P. n ∈W o

P (@p)
bPcR∪{n} otherwise

(17)

bc[q1,q2]cR = c[bq1cR,bq2cR] (18)

Table 5: Definition of the erasure function bPcR

Lemma 19 (Erasure preserves well-formedness). Let P be a race-free reachable weak
configuration. If `w P : ok then `s bPc : ok.

Theorem 20 (Race-free simulation). Let S0 and P0 be a strong, resp. a weak initial
configuration for the same thread t and representing the same values for the global
variables. If S0 is data-race free, then S0 & P0.

Proof. Assume two initial race-free configurations P0 and S0 from the same program
and the same initial values for the shared variables. To prove the&-relationship between
the respective initial configurations we need to establish a simulation relation, say R,
between well-formed strong and weak configurations such that P0 and S0 are in that
relation.

Let P and S be well-formed configurations reachable (race-free) from P0 resp. S0.
DefineR as relation between race-free reachable configurations as

PR S if S≡ bPc (19)

using the erasure from Definition 17. Note that by Lemma 18, P1 R S and P1 ≡ P2
implies P2 R S.

Case: R-WRITEw: p〈σ ,z := v; t〉 −→w νn (p〈σ ′, t〉 ‖ n(|z:=v|)),
where σ = (Ehb,Es) and σ ′ = (E ′hb,E

′
s) = (Ehb+(n,z),Es+Ehb(z)). By the concurrent-

writes Lemma 13(2), W 9
P (z@p) = /0, i.e., there are no concurrent write events from the

perspective of p. This implies that for all write events n′(|z:=v′|) in P, we have n′ ∈ Ehb.
If n′ ∈ Es, then n ∈ E ′s as well. If n′ ∈ Ehb \Es, then n′ ∈ E ′s as well. Either way, all write
events to z contained in P prior to the step are shadowed in p after the step.

Now for the new write event n in P′: clearly n ∈W o
P′(z@pi), i.e., the event is ob-

servable for all threads. By the race-free consensus Lemma 15, we have that this is the
only event that is observable by all threads, i.e.⋂

pi

W o
P′(z@pi) = {n} . (20)

14

That means for the erasure of P′ that bP′c ≡ . . . ‖ p〈t〉 ‖ (|z:=v|) where (|z:=v|) is the
result of applying b c to the write event n(|z:=v|) of P. In particular, equation (20) shows
that the write event n is not “filtered out” (cf. the cases of equation (15) and (17) in
Definition 17) and furthermore that all other write events for z in P′ are filtered out.4 It
is then easy to see that by R-WRITEs, bPc −→s bP′c.

The remaining cases are similar. ut

7 Related work

There are numerous proposals for and investigations of weak and relaxed memory mod-
els [1, 28, 3]. One widely followed approach, called axiomatic, specifies allowed be-
havior by defining various ordering relations on memory accesses and synchronizing
events. Go’s memory model [18] gives an informal impression of that style of specifi-
cation. Less frequent are operational formalizations.

Boudol and Petri [10] investigate a relaxed memory model for a calculus with locks
relying on concepts of rewriting theory. Unlike the presentation here, writes are buffered
in a hierarchy of fifo-buffers reflecting the syntactic tree structure of configurations:
immediately neighboring processors share one write buffer, neighbors syntactically fur-
ther apart share a write buffer closer to the shared global memory located at the root.
The position of a redex in the configuration is used as thread identifier and determines
which buffers are shared. Consequently, parallel composition cannot be commutative
and, therefore, terms cannot be interpreted up-to congruence ≡ as in our case.

Flanagan and Freund [16] give an operational semantics of a weak memory model
(“adversarial” memory) used as the basis for a race checker. The model is not as weak
as the official JMM but weaker than standard JVM implementations.

Zhang and Feng [37] use an abstract machine to operationally describe a happens-
before memory model. Different from us, they make use of event buffers. Similar to us,
they keep “older” write events to account for more than one observable variable value.
The paper does not, however, deal with channel communication. Another operational
semantics that uses histories of time-stamped, past read/write events is given by Kang
et al. [23]. In this semantics, threads can promise future writes, and a reader acquires in-
formation on the writer’s view of memory. Fences then synchronize global time-stamps
on memory with thread-local information. Bi-simulation proofs mechanized in Coq
show correctness of compilation to various architectures.

Demange et al. [12] formalize a weak semantics for Java using buffers. The seman-
tics is quite less relaxed than the official JMM specification, the goal being to avoid
the intricacies of the happens-before JMM and offer a firmer ground for reasoning.
The model is defined axiomatically and operationally and the equivalence of the two
formalizations is established.

Pichon-Pharabod and Sewell [33] investigate an operational representation of a
weak memory model that avoids problems of the axiomatic candidate-execution ap-
proach in addressing out-of-thin-air behavior. The semantics is studied in a calculus
featuring locks as well as relaxed atomic and non-atomic memory accesses.

4 The latter is indirectly clear already as we have established that bc preserves well-formedness
under the assumption of race-freedom (Lemma 19).

15

Guerraoui et al. [19] introduce a “relaxed memory language” with an operational
semantics to enable reasoning about various relaxed memory models. Their aim is
to allow correctness arguments for software transactional memories implemented on
weak-memory hardware.

Alrahman et al. [4] formalize a relaxed total-store order memory model with fence
and wait operations. They provide an implementation in Maude, a rewriting-based exe-
cutable framework that precedes K, and explore ways to mitigate state-space explosion.

Lange et al. [26] define a small calculus, dubbed MiGo or mini-Go, featuring chan-
nels and thread creation. The formalization does not cover weak memory. Instead, the
paper uses a behavioral effect type system to analyze channel communication.

8 Conclusion

We present an operational specification for a weak memory model with channel com-
munication as the prime means of synchronization. We prove a central guarantee, namely
that race-free programs behave sequentially consistently. The our semantics is accom-
panied by an implementation in the K framework and by several examples and test cases
[14]. We plan to use the implementation towards the verification of program properties
such as data-race freedom.

The current weak semantics remembers past write events as part of the run-time
configuration, but does not remember read events. We are working on further relaxing
the model by treating read events similar to the representation of writes. This will al-
low us to accommodate load buffering behavior common to relaxed memory models,
including that of Go.

16

Bibliography

[1] Adve, S. V. and Gharachorloo, K. (1995). Shared memory consistency models: A tutorial.
Research Report 95/7, Digital WRL.

[2] Adve, S. V. and Hill, M. D. (1990). Weak ordering — a new definition. SIGARCH Computer
Architecture News, 18(3a).

[3] Alglave, J., Maranget, L., and Tautschnig, M. (2014). Herding cats: Modelling, simulation,
testing, and data-mining for weak memory. ACM Transactions on Programming Languages
and Systems, 36(2).

[4] Alrahman, Y. A., Andric, M., Beggiato, A., and Lluch-Lafuente, A. (2014). Can we effi-
ciently check concurrent programs under relaxed memory models in Maude? In Escobar, S.,
editor, Rewriting Logic and Its Applications – 10th International Workshop, WRLA 2014, Held
as a Satellite Event of ETAPS, Grenoble, France, April 5-6, 2014, Revised Selected Papers,
volume 8663 of Lecture Notes in Computer Science, pages 21–41. Springer Verlag.

[5] Aspinall, D. and Ševčı́k, J. (2007). Java memory model examples: Good, bad and ugly. Proc.
of VAMP, 7.

[6] Batty, M., Mamarian, K., Nienhuis, K., Pinchion-Pharabod, J., and Sewell, P. (2015). The
problem of programming language concurrency semantics. In Vitek, J., editor, Programming
Languages and Systems: 24th European Symposium on Programming, ESOP 2015, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015, Proceedings, volume 9032 of Lecture Notes in Computer
Science, pages 283–307. Springer Verlag.

[7] Becker (2011). Programming languages — C++. ISO/IEC 14882:2001.
[8] Boehm, H.-J. and Adve, S. V. (2008). Foundations of the C++ concurrency memory

model. In ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI). ACM.

[9] Boehm, H.-J. and Demsky, B. (2014). Outlawing ghosts: Avoiding out-of-thin-air results. In
Proceedings of the Workshop on Memory Systems Performance and Correctness, MSPC ’14,
pages 7:1–7:6, New York, NY, USA. ACM.

[10] Boudol, G. and Petri, G. (2009). Relaxed memory models: An operational approach. In
Proceedings of POPL ’09, pages 392–403. ACM.

[11] Castagna, G. and Gordon, A. D., editors (2017). 44th Symposium on Principles of Pro-
gramming Languages (POPL). ACM.

[12] Demange, D., Laporte, V., Zhao, L., Jagannathan, S., Pichardie, D., and Vitek, J. (2013).
Plan B: A buffered memory model for Java. In Proceedings of POPL ’13, pages 329–342.
ACM.

[13] Donovan, A. A. A. and Kernighan, B. W. (2015). The Go Programming Language.
Addison-Wesley.

[14] Fava, D. (2017). Operational semantics of a weak memory model with channel synchro-
nization. https://github.com/dfava/mmgo.

[15] Fava, D., Steffen, M., and Stolz, V. (2018). Operational semantics of a weak memory
model with channel synchronization: Proof of sequential consistency for race-free programs.
Technical Report 477, University of Oslo, Faculty of Mathematics and Natural Sciences,
Dept. of Informatics. Available at http://www.ifi.uio.no/˜msteffen/download/18/
oswmm-chan-rep.pdf.

[16] Flanagan, C. and Freund, S. N. (2010). Adversarial memory for detecting destructive races.
In Zorn, B. and Aiken, A., editors, ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM.

https://github.com/dfava/mmgo
http://www.ifi.uio.no/~msteffen/download/18/oswmm-chan-rep.pdf
http://www.ifi.uio.no/~msteffen/download/18/oswmm-chan-rep.pdf

[17] Go language specification (2016). The Go programming language specification. https:
//golang.org/ref/spec.

[18] Go memory model (2014). The Go memory model. https://golang.org/ref/mem.
Version of May 31, 2014, covering Go version 1.9.1.

[19] Guerraoui, R., Henzinger, T. A., and Singh, V. (2009). Software transactional memory on
relaxed memory models. In Bouajjani, A. and Maler, O., editors, Proceedings of CAV ’09,
volume 5643 of Lecture Notes in Computer Science, pages 321–336. Springer Verlag.

[20] Hoare, C. A. R. (1978). Communicating sequential processes. Communications of the
ACM, 21(8):666–677.

[21] Jones, G. and Goldsmith, M. (1988). Programming in occam2. Prentice-Hall International,
Hemel Hampstead.

[22] K framework (2017). The K framework. available at http://www.kframework.org/.
[23] Kang, J., Hur, C., Lahav, O., Vafeiadis, V., and Dreyer, D. (2017). A promising semantics

for relaxed-memory concurrency. In [11], pages 175–189.
[24] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system. Com-

munications of the ACM, 21(7):558–565.
[25] Lamport, L. (1979). How to make a multiprocessor computer that correctly executes multi-

process programs. IEEE Transactions on Computers, C-28(9):690–691.
[26] Lange, J., Ng, N., Toninho, B., and Yoshida, N. (2017). Fencing off Go: Liveness and safety

for channel-based programming. In [11].
[27] Manson, J., Pugh, W., and Adve, S. V. (2005). The Java memory memory. In Proceedings

of POPL ’05. ACM.
[28] Maranget, L., Sarkar, S., and Sewell, P. (2012). A tutorial introduction to the ARM and

POWER relaxed memory models (version 120).
[29] Milner, R. (1971). An algebraic definition of simulation between programs. In Proceed-

ings of the Second International Joint Conference on Artificial Intelligence, pages 481–489.
William Kaufmann.

[30] Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mobile processes, part I/II.
Information and Computation, 100:1–77.

[31] Palamidessi, C. (1997). Comparing the expressive power of the synchronous and the asyn-
chronous π-calculus. In Proceedings of POPL ’97, pages 256–265. ACM.

[32] Peters, K. and Nestmann, U. (2012). Is it a “good” encoding of mixed choice? In Proceed-
ings of the International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS ’12), volume 7213 of Lecture Notes in Computer Science, pages 210–
224. Springer Verlag.

[33] Pichon-Pharabod, J. and Sewell, P. (2016). A concurrency-semantics for relaxed atomics
that permits optimisation and avoids out-of-thin-air executions. In Proceedings of POPL ’16.
ACM.

[34] Pugh, W. (1999). Fixing the Java memory model. In Proceedings of the ACM Java Grande
Conference.

[35] Roşu, G. and Şerbănuţă, T. F. (2010). An overview of the K semantic framework. Journal
of Logic and Algebraic Methods in Programming, 79(6):397–434.

[36] Steffen, M. (2016). A small-step semantics of a concurrent calculus with goroutines and
deferred functions. In Ábrahám, E., Huisman, M., and Johnsen, E. B., editors, Theory and
Practice of Formal Methods. Essays Dedicated to Frank de Boer on the Occasion of His 60th
Birthday (Festschrift), volume 9660 of Lecture Notes in Computer Science, pages 393–406.
Springer Verlag.

[37] Zhang, Y. and Feng, X. (2016). An operational happens-before memory model. Frontiers
in Computer Science, 10(1):54–81.

18

https://golang.org/ref/spec
https://golang.org/ref/spec
https://golang.org/ref/mem
http://www.kframework.org/

	Operational Semantics of a Weak Memory Model with Channel Synchronization
	Introduction
	Background
	Abstract syntax
	Operational semantics
	Local states, events, and configurations
	Reduction steps

	Strong semantics
	Relating the strong and the weak semantics
	The strong semantics conditionally simulates the weak one

	Related work
	Conclusion

