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Abstract—Previous works in the area of network security have
emphasized the creation of Intrusion Detection Systems (IDSs)
to flag malicious network traffic and computer usage. Raw IDS
data may be correlated and form attack tracks, each of which
consists of ordered collections of alerts belonging to a single
multi-stage attack. Assessing an attack track in its early stage
may reveal the attacker’s capability and behavior trends, leading
to projections of future intrusion activities. Behavior trends
are captured via Variable Length Markov Models (VLMM)
without predetermined attack plans. A virtual terrain schema
is developed to model network and system configurations, and
used to estimate critical elements and vulnerabilities exposed to
each attacker given his/her progress. Experimental results show
promises for these proactive measures in ensuring continuous
and critical cyber operations.

I. INTRODUCTION

The pervasion of computer networks has amplified the
importance of cyber security ranging from personal life
to homeland security. Information and cyber security are
multifaceted and entail the provision of user accounts and
passwords to protect data, the encryption of communication
mediums, the imposition of network access rules through
firewalls, etc. In addition to these preventive methods, cyber
security relies heavily on Intrusion Detection Systems (IDSs),
which work by performing anomaly detection or pattern
recognition on network traffic and/or host activities. Many
IDS solutions have been proposed, and taxonomies can be
found in [1] and [2]

As network complexity and size grow, the number of IDSs
deployed and alerts also grow and often overwhelm human
analysts in critical times [3], [4]. Several methods for creating
comprehensive alert reports have been proposed as potential
solutions to this problem. Some of these efforts were in the
area of alert aggregation [5], [6] or alert correlation [7], [8],
[9], [10], [11]. Alert correlation essentially finds IDS alerts
that are related and organizes them into ordered collections,
often called attack tracks. These attack tracks, borrowing the
notion from object tracking, may be viewed as observed ‘vir-
tual trajectories’ of cyber attacks. This work discusses ways
to project the progression of cyber attacks, enabling analysts
to proactively prevent plausible future intrusion activities.

Three earlier studies have attempted to project likely future

attack actions. Qin and Lee [12] proposed to adaptively update
Bayesian networks and used them to model and predict attack
plans of actions. It is unclear, however, how the various attack
plans can be created and matched efficiently with real-time
observations. Li et al. [13] utilized a data mining technique
to extract the sequential relationships from observed attack
actions in training data. Likely sequences were used to assess
potential threats in real time by matching with newly observed
alert sequences. Their work, however, consider the sequential
order of all alerts, regardless whether they belonged to the
same multistage attack. No result was published to suggest
how well Li et al. ’s technique predicts next likely actions.
Holsopple et al. [14] proposed to separate the threat projection
process into two sub-tasks: analyzing the attack methods
versus analyzing the network topology. The outcomes of the
two sub-tasks were then combined to determine the threatened
entities in the network.

The challenge of projecting attack actions comes from the
fact that not only cyber attacks are diverse and constantly
changing, but so are the network and system configurations.
Relying on a set of rigid attack plans or assessing all aspects
at once may lead to inconclusive or, worse yet, misleading
projection results. This work discusses various methods that
examine different aspects of cyber attacks and aims at pro-
viding better situational awareness by showing the analysts
where and how the attacks might progress in the near future.
Section II will first illustrate the cyber intrusion projection
problem. Section III discusses a graph-based virtual terrain
model, representing network and system configurations, and
its uses for threat projection. Section IV presents our approach
on capturing and projecting attacker’s behavior trends. Section
V concludes the paper.

II. ELEMENTS FOR CYBER INTRUSION PROJECTION

The cyber intrusion projection system envisioned here is
a real-time system that shows the analysts plausible futures
as attack actions are observed. An alert correlation system is
assumed to take the observed attack actions, in the form of
IDS alerts, and produces ordered collection of alerts belong-
ing to the same multistage attack. These ordered collection
of alerts, called attack tracks, will be the basis for projecting



the next plausible attack actions the network might see. This
work does not intend to predict new attack methods that have
not been observed before. The methodology described here
aims at identifying plausible futures of ongoing attacks.

Recognizing the many aspects involved in projecting future
attack actions, this work leverages the concepts put forth
by Holsopple et al. [14] and the Capability-Opportunity-
Intent (COI) model for threat assessment [15]. In addition,
we conjecture that behavior trends is also a critical element,
as hackers might execute/import malicious codes in series,
which exhibit patterns.

As a result, there are four basic elements for projecting
cyber attack actions:
• Capability: The intrusion methods the attacker has use

is indicative to the types of vulnerabilities he is capable
of exploiting.

• Opportunity: Given the already compromised entities
or privileges by a given attack, originally hidden entities
or vulnerabilities may be exposed and give opportunities
to the attacker.

• Intent: The intent of a cyber attacker can be quite di-
verse, perhaps making it impossible to estimate. Instead
of assessing the true intent, cyber intrusion projecting
may examine the criticality of network entities and
operations to determine the worst-case intent of the
attacker.

• Behavior trend: The patterns exhibited in the observed
cyber attack actions. The pattern may exist in attack
methods, types of services or OS attacked, subnets
visited, protocols exploited, etc.

A cyber intrusion projection system may address one or
more elements above. In the case where individual elements
are addressed via different algorithms, an all-encompassing
method may be required to combine the estimations. The
combination method is beyond the scope of this paper. The
next two sections describe the proposed approaches and how
they address the four elements above.

III. VIRTUAL TERRAIN ASSISTED ASSESSMENT

A reasonably secured network typically has multiple access
domains, where direct access to internal and often critical
domains or subnets is prohibited. Serious cyber attacks, thus,
need to exploit different system vulnerabilities and progress
through multiple domains. Reasoning on the progress made
by a cyber attack shall benefit from a virtual terrain model that
represents the logical accessibility from one access domain to
another. Most importantly, the virtual terrain should model the
system and network configurations, including their vulnera-
bilities that may be exposed as the attacker compromises one
or more systems in the network.

Vidalis and Jones [16] proposed the use of a vulnerability
tree to identify the types of attacks an attacker could perform
to accomplish a goal. Their model requires a separate vulner-
ability tree for each possible goal, which could be potentially
numerous. Philips and Swiler [17] and Liu and Man [18]
suggested the use of a Bayesian network to model the

Fig. 1. A graphical representation of the virtual terrain model.

vulnerabilities. Their model assumes acyclic graphs, which
implies that bi-directional connections between hosts must
be modeled in separate acyclic graphs. Massicote et al.
[19] discussed ways of introducing contextual information
to cross examine reported IDS alerts, therefore reducing
false positives. Their experiences suggested that contextual
information may be derived by utilizing Snort [20], Nessus
[21] and Bugtraq [22]. This work, developed independently
of Massicote’s work, shares some similar ideas, yet provides
additional network connectivity and privilege information for
situation assessment and threat projection.

A. A graph-based virtual terrain model

A virtual terrain modeling approach is proposed in [23].
The virtual terrain model is composed of three key component
sets: hosts or host-clusters (H), switches or routers (R), and
users (U ). Figure 1 is a graphical representation of the three-
tier definition and the associations between the switches and
hosts and those between the users and hosts. Hosts, which are
used to model regular user machines, uniformly configured
host-clusters, and various servers, are interconnected via a
tree of switches/routers. The hosts are the leaf nodes for this
part of the graph. Note that common practice would have an
enterprise network configured as a spanning-tree even though
there are physical loops and redundant paths, as represented
by the dashed lines shown in Figure 1. Each user node may
have one or more accounts, which are depicted by the small
circles shown next to the user nodes. Some accounts are local
to a single host node, and some are associated with multiple
hosts. The accounts and the hosts form a bipartite graph.

Also shown in Figure 1 are the key attributes associated
with the hosts, switches, and users. Each switch has a list of
firewall rules defining the allowed or banned protocols and
IPs. Each host also contains a list of banned port-numbers,
protocols, IPs, or a combination of the three (not shown in
the figure). Remote services and local applications running
on each host node are specified, and each service is defined
with a set of ‘exposures.’ The exposures correspond to the
known alert descriptions (or vulnerabilities) associated with
each service. Note that information such as remote services
and service vulnerability exposures may be obtained from



automatic scanning tool such as Nessus [21] and NMap [24],
and can reference to databases such as the National Vulnera-
bilities Database (NVD) [25] and the Common Vulnerabilities
and Exposures (CVE) Dictionary [26].

B. Assessing capability and opportunity using virtual terrain

It is difficult, perhaps impossible, to estimate an attacker’s
exact capability in exploiting system vulnerabilities. An ex-
tremely conservative estimate is to assume that all attackers
are able to execute all exploitation methods. A more opti-
mistic approach is to assume that an attacker is able to exploit
services that he/she has successfully attacked before. The
latter approach allows a significant reduction in projecting
possible vulnerabilities each attacker can exploit and is used
for this work.

The key tasks in determining the optimistic capability set
for each attack track are (1) finding the services associated
with the executed attacks and (2) determine the executed
attacks that are actually successful. Note that the capability
is determined at the service level, e.g., SMTP and DNS,
but not at the specific exploit level. This is to reflect that
attackers typically know various methods to exploit the same
service; including only the specific executed attack methods
will be overly optimistic. Determining successful attacks are
also important because unsuccessful attacks do not constitute
sufficient evidences for the attacker’s capability.

The two tasks are accomplished by mapping the correlated
alerts to the service exposures of the corresponding target
defined in the virtual terrain. First, for each attack track tj ,
the successful attacks are filtered by examining the firewall
rules along the path from the source to the target, and the
exposures sets in the targeted hosts. Note that IDSs and alert
correlators may have filtered out false positive alerts, but the
proposed system does not make such assumption. Only the
service exposures associated with successful attack actions
will be asserted for each tj . The service instances R(tj) can
then be identified through the asserted exposures. The other
service instances in the network that are vulnerable to the
same attacks can be found via the threatened service type
S(tj) = {s|s = S(r),∀r ∈ R(tj)}.

Capability alone is not suitable to provide estimates of
future attack actions. The next question is how to narrow
down to the hosts that are ‘exposed’ to each attack, i.e., the
opportunities. Note that if traffic is allowed to freely move
within the network, regardless of subnet domain, protocol,
or port numbers, any host node is virtually an immediate
neighbor of all other nodes. That is, the virtual terrain is
equivalent to a complete graph of host nodes. In which case,
all nodes running service instances belonging to S(tj) will
be threatened. In reality, networks are reasonably secured
with firewall rules, permission, and banned lists defined to
segregate the access domains. By examining the firewall rules
of the switches and the permission lists of the hosts that are
accessible from the attacked hosts, the assessment algorithm
finds the logical entities that are exposed to each attack. Note

that the entities can be hosts or users. The discussion in this
proposal shall focus on hosts.

For each attack track, the opportunity assessment will
instantiate a trajectory graph from the virtual terrain model to
represent its progress. This trajectory graph will be dynami-
cally updated when a new alert is reported to correlate with
the attack track. The search for exposed entities can be found
by taking advantage of specific graph properties. For example,
the hosts interconnected via a tree of switches can be found
in O(log(n)) time where n is the number of switches. One
proposed effort will be to develop an efficient algorithm that
finds exposed nodes from a set of attacked nodes when they
are interconnected with firewall-rule defined paths within a
general mesh.

The current algorithm assigns a ‘threat score’ to each host
that is susceptible to the demonstrated capability and exposed
to the current progress of each attack track. These threat
scores, ranging between 0 and 1, represent the relative belief
that an entity will be attacked soon. A threat score of 1
means that the entity is already compromised. No optimal
methodology has been identified to determine how the threat
scores should be assigned in order to maximize the projection
accuracy. A heuristic scoring scheme is currently imple-
mented to provide the analysts with quantitative references
in projecting threatened entities in the network.

A prototype of the virtual terrain model and the asso-
ciated algorithms for cyber intrusion projection has been
implemented and tested. Note that most research work on
cyber security has focused on intrusion detection and alert
correlation; therefore, most datasets available are composed
of uncorrelated alerts with little or no ground truth in terms
of network configuration or attack tracks. Examples of such
datasets include the ones from the MIT Lincoln Lab [27],
[28], KDD Cup 99 [29], and Defcon [30]. Two mock-up
networks are, therefore, developed and experimented with 15
random attack sequences each. Table I shows the experimental
results for the two networks. Network 1 has four subnets
and each subnet has access to two dedicated servers and four
shared centralized servers. This is to represent the case with
segmented departments. Network 2 has 3 subnets, each of
which can access only 1 dedicated server but share most
others. The subnets in Network 2 are hidden behind layers
of tightly controlled servers, including a server farm of 10.

#Servers #Subnets AvgCS AvgAR
Network 1 12 4 71.5% 86.2%
Network 2 19 3 89.6% 52.7%

TABLE I
EXPERIMENTAL RESULTS FOR PROJECTING USING VIRTUAL TERRAIN.

The Average Compromising Score (AvgCS) shown in
Table I is the average threat scores of entities that are about to
be compromised next. Intuitively, a good projection scheme
will give high threat score to entities just before they are
compromised. Therefore, the higher the AvgCS, the better
the projection accuracy. Reasonably good AvgCS is shown
for both networks. Network 1 sees a lower AvgCS because



the hosts and servers in each subnet are all 1 server away
from the Internet and, thus, are easily susceptible to attacks.
This makes it harder to differentiate between more and less
severely threatened entities. Network 2, on the other hand,
sees close to 90% AvgCS. This exceptional performance
is primarily due to the tightly configured server and subnet
access of Network 2; only few vulnerable paths are avaiable
to attack internal hosts and servers, and the paths can be quite
different from one target to another.

The Average Assessee Reduction (AvgAR) in Table I
shows the opposite trend as AvgCS does. The metric AvgAR
represents the average percentage of entities the system has
reduced for the analysts to focus on. The implemented system
only shows analysts the entities that have a threat score no less
than 0.5. In other words, for experiments done on Network 1,
the analysts only need to focus on 13.8% of the entities they
would have to examine without the proposed system. Network
2 sees a relatively less reduction of 52.7%. Network 1 sees
a better reduction because the subnets are segmented only 1
server away from the Internet; so the reduction of assessee is
already high even at the very early stage of an attack.

In general, examining the attacker capability and oppor-
tunity, i.e., exposed vulnerabilities, is effective to project
most cyber attack actions, particularly for well-managed and
secured networks.

C. Assessing intent using virtual terrain

As discuss in Section II, this work does not intend to
estimate the true ‘intent’ of attackers. Instead, the proposed
approach will estimate the impact of the cyber attacks on the
critical entities in the network. More specifically, the use of
virtual terrain will help identify the targeted network entities
that are critical to network operations or due to the associated
data content.

Similar to the process described in Section III-B, each
attack track is mapped onto the virtual terrain model by assert-
ing the service exposure that match each alert. Once mapped,
the sequences of alerts are transformed into sequences of
complex objects, which are associated with network services,
hosts, and users. When assessing the impact of the attacks, a
heuristic scoring scheme is developed to quantify the relative
severity of damage on each network component. This work
defines the impact scores (IX(x)) for an entity x as a function
of its subcomponents’ criticality with respect to x (c(·, x)) and
a score representing its subcomponents’ exposure to current
observed attack actions (αx). An entity can be a host, a
service, a user, a subnet or the entire network.

IX(x) =

∑
r∈R(x) c(r, x) · αr∑

r∈R(x) c(r, x)
; (1)

Note that an entity can be a subcomponent of several other
entities in the network for assessment purposes. For example,
a host may be a subcomponent of a subnet but also a
subcomponent of a overall network service.

All variables shown in (1) is normaized to between 0 and
1. Each component’s criticality value may be assigned by

the analysts as it represent, for example, whether a service
is important to the mission of the network. The exposure
scores, on the other hand, is iteratively derived from the
service vulnerability scores at the bottom level of virtual
terrain. A service vulnerability score is asserted if an observed
alert is mapped to the corresponding service vulnerability.
The service vulnerability scores can be either pre-assigned
by the security analysts or derived from different vulnerabil-
ity scoring systems, such as Microsoft’s proprietary scoring
system [31], US-CERT [32], SANS [33], and the Common
Vulnerability Scoring System (CVSS) [34].

The impact scores can be evaluated for any network entity
with respect to any observed attack track, and can be continu-
ously updated as new alerts are reported. At a given stage of
an attack, not all attacked services are fully compromised.
The proposed scheme will ‘project’ the impact score by
calculating according to (1) except that all vulnerabilities of
attacked services are assumed to be asserted. This allows the
analysts to project the critical impact caused by an attack to
each network entity. An example 13-step attack is performed
on a third mock-up network that is larger and more secured
than the two networks described in Section III-B. Figure 2
shows how the actual impact score and the projected impact
score for the Administrator (IU (Admin)) evolve as the alerts
are reported.

Fig. 2. Actual and projected IU (Admin) as a 13-step attack progresses.

As can be seen in Figure 2, the actual impact score more or
less follows the projected impact score. Similar trends were
also observed for many other multistage attacks. A benefit of
adopting this impact based estimation is that it is not restricted
to the attacker demonstrated capability, and will not be misled
by attacker’s decoy attacks because the projection is based
on what will lead to most critical impact on the network, not
based on attacker behavior.

IV. BEHAVIOR EXTRACTION AND PROJECTION VIA
SEQUENCE MODELING

In addition to benefiting from virtual terrain which models
capability, opportunity, and intent, projecting attack actions
can take advantage of analyzing attacker behavior exhibited
in individual attack tracks. Recognizing that cyber attack
behavior can be diverse and changing, this work does not use
specific attack plans, nor attempt to construct attack plans.



Furthermore, no network specific information is required.
Instead, each ordered collection of alerts are converted to a
sequence of symbols using only the information contained in
the alerts. Depending on the alert field or the combination of
fields used, each attack track may be converted to a different
sequence of symbols. In current work, the symbols are defined
in terms of the attack description (Ωd), the type or category
of attacks (Ωc), the network protocol used for the attack (Ωp),
and the subnet where the target resides (Ωt).

With respect to a symbol space Ω, each attack sequence
is now transformed to a sequence s = {x1, x2, x3, · · · }. The
sequential order of symbols in historical data is used to build
a model that characterize behavior patterns. The pattern may
exist from one symbol to the next, from two consecutive
symbols to the next, and so on. This is the intuition behind
the use of Variable Length Markov Models (VLMM). Other
models, such as Hidden Markov Model, are also possible, but
the complexity may be too high to be realized in real-time
handling hundreds or thousands or alerts per second.

Markov models may consider sequential relationships in
various orders. Consider an ongoing attack with k observed
actions {x1, . . . , xk}. A model of order o gives the prob-
abilities po(x) = P{x|xk−o+1, . . . , xk}, ∀x ∈ Ω. The
probabilities may be obtained via historical attack sequences.
A sequence of length n will contribute to the building of oth

order models for 1 ≤ o ≤ n. More specifically, a sequence of
length n will provide one sample to the nth order model, two
samples to the (n−1)th order model, ..., and n samples to the
1st order model. A suffix tree is used to record the samples
and to store the models of different orders. The suffix tree
structure allows one to find a symbol xn+1 in O(n) time
given a sequence or a context of length n.

Markov Models of different orders can be blended into a
VLMM. Let po(x) be the probability of an event x happening
at a certain context according to a model of order o. A blended
probability for the event x can be computed as follows:

p(x) =
N∑

o=−1

wo × po(x) (2)

where N is the maximum length of a context, wo is the weight
associated with the oth order model, and

∑N
o=−1 wo = 1.

Note that contexts should be penalized by their rarity and re-
warded by their specificity. Examples of the weight functions
can be found in [35]. Notice that the summation in Eq.(2)
starts at −1. The minus-one order model assigns all characters
a probability of 1/|Ω| to prevent the zero frequency problem
[35]. The zero order model holds the frequency count of all
x ∈ Ω in the training set.

The VLMM model allows us to discover patterns within
attack sequences without explicitly defining attack plans. In
fact, an ongoing attack sequence may match to patterns
from numerous different types of attack sequences before
it. VLMM combines the probabilities associated with all
matched patterns and produce a best guess.

Experiments have been conducted for the VLMM approach

using a dataset created through scripted multi-stage attacks
performed on a VMWare network. This dataset contains a
total of 1482 attack tracks comprising 10425 alerts. Correlated
alerts are sent to the system in the order of their time
stamps. Figures 3 and 4 show the moving average prediction
accuracy achieved by the VLMM approach when attack
description (Ωd), attack category (Ωc), network protocol (Ωp),
and destination subnet (Ωt) are used to define the symbol
space. The prediction accuracy is the percentage of occurring
symbols fall within a prediction set. The prediction set
comprises symbols with the highest probabilities according
to the VLMM model. The number of symbols contained in
the prediction set varies, with their cumulative probability
being no less than 95%. Surprisingly, this 95% cumulative
probability correspond to only a small percentage of symbols
- less than 6 out of 51 symbols in the case of Ωd.

Fig. 3. Prediction accuracy using VLMM as alerts are observed.

Fig. 4. Prediction accuracy using VLMM as alerts are observed.

In the beginning of the simulation, not all the symbols have
occurred and the VLMM model does not have sufficient data
to build an accurate model. After the transient period, which
ends around 1000∼2000 alerts depending on the symbol
definition used, the prediction accuracy fluctuates around
90%, 75%, 98%, and 70% for the cases of using Ωd, Ωc, Ωp,
and Ωt, respectively. Overall, the prediction accuracy is better
than expected considering the number of possible symbols
each definition can have. The use of attack category is of
particular interest since it gives analysts a reasonable scope
of projection without worrying the specific vulnerability the
attacker will be exploiting. Combining the behavior based
projection of attack methods, protocol, and target subnet with
the virtual terrain information shall enhance the prediction
accuracy even further since infeasible combinations on the
given network will be eliminated.



V. CONCLUSION

Defending against multistage cyber attacks has become a
top priority for government, business, as well as individuals.
This work proposes to project next actions of ongoing cy-
ber attacks. This proactive measure aims to assist network
security analysts with an enhanced cyber situational view
of plausible futures. Recognizing the diverse and constant
changing nature of cyber attacks and network configurations,
this work decomposes the cyber intrusion projection problem
into four assessment elements: capability, opportunity, intent,
and behavior. A set of algorithms are proposed to analyze
these elements independently. More specifically, a graph-
based virtual terrain model is utilized to analyze the attacker’s
capability, exposed vulnerability, and critical target entities,
and a VLMM model is used to extract and project behavior
patterns. The proposed algorithms are all implemented and
able to process alerts in real time. The promising results and
observations warrant the potential of our approaches utilizing
network-based virtual terrain and behavioral-based VLMMs.
An ongoing work is to develop an intelligent combination of
the various algorithms under different scenarios, particularly
in the presence of stealthy and decoy attacks.
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