
1

Projecting Cyber Attacks Through
Variable Length Markov Models

Daniel S. Fava, Stephen R. Byers, Shanchieh J. Yang
Department of Computer Engineering

Rochester Institute of Technology

Abstract—Previous works in the area of network security have
emphasized the creation of Intrusion Detection Systems (IDSs)
to flag malicious network traffic and computer usage, and the
development of algorithms to analyze IDS alerts. One possible
byproduct of correlating raw IDS data are attack tracks, which
consist of ordered collections of alerts belonging to a single multi-
stage attack. This paper presents a Variable Length Markov
Model (VLMM) that captures the sequential properties of attack
tracks, allowing for the prediction of likely future actions on
ongoing attacks. The proposed approach is able to adapt to newly
observed attack sequences without requiring specific network
information. Simulation results are presented to demonstrate the
performance of VLMM predictors and their adaptiveness to new
attack scenarios.

I. I NTRODUCTION

The growth of information in digital format and the perva-
sion of computer networks into human activity have amplified
the importance of managing data access and the channels
through which data flows. Information and cyber security
are multifaceted and entail the provision of user accounts
and passwords to protect data, the encryption of commu-
nication mediums, the imposition of network access rules
through firewalls, etc. In addition to such preventive methods,
Intrusion Detection Systems (IDSs) are often employed to
monitor networks for traces of malicious actions and security
breaches. IDSs work by performing anomaly detection or
misuse detection on host computers or network traffic. Several
IDS solutions have been proposed, and taxonomies have been
provided [1], [2].

As the complexity and size of networks grew, the increasing
number of deployed IDSs generated a number of alerts that be-
came overwhelming to human analysts [3], [4]. Many methods
for creating comprehensive alert reports have been proposed
as potential solutions to this problem. Some of these efforts
were in the area of alert aggregation [5], [6], alert correlation
[7], [8], [9], [10], [11], current and future threat analysis [12],
[13], and projection of likely future attack actions [14], [15].
Among these, threat projection is an important step towards
the mitigation of critical attacks.

Previous works in the area of attack projection heavily rely
on a priori knowledge of network and system configurations,
and are, therefore, challenged by the diversity and the ever-
changing nature of system settings and exploitation methods.
Alternatively, the framework presented here models malicious
network activity and extracts relevant information about an
attacker’s overall behavior and intent without requiring knowl-
edge of the underlying network configuration. The attacker’s
probable future attack steps and behavior are inferred from

a Variable Length Markov Model (VLMM) created from
previously observed as well as ongoing attack sequences.

The method presented in this paper borrows from sequence
modeling techniques that have successfully been implemented
in fields such as text compression, computational biology
(DNA sequence analysis), and data forecasting. By interpreting
cyber attacks as sequences of malicious actions observed
through IDS alerts, this research is able to investigate the
application of sequence modeling techniques in the context
of cyber threat projection.

II. RELATED WORK

A. Previous approaches

Qin and Lee were one of the first to propose a high level
attack projection scheme [15]. They investigated the use ofan
alert correlation system that was also capable of performing
attack prediction. It applied Bayesian networks to IDS alerts
in order to identify attack sequences and to predict possible
future attack steps. Its high level correlation was based on
plan recognition and required the creation of several possible
attack plans by domain experts. Challenging steps in such an
approach are1) the creation of attack plans that are general
enough to capture a myriad of attack behavior, but specific
enough to provide insights about an attacker’s goals, and2)
the search for a match between an unfolding multistage attack
among the many devised attack plans. Similar to Qin and
Lee’s work, Mehtaet al. [16] also employs pre-constructed
probabilistic attack graphs to rank attack tracks.

The problem of projecting possible future cyber attacks was
also explored by Holsoppleet al. [13]. In this work, three
pieces of information were used in order to identify likely
attack targets: network topology, a mapping between services
and host computers, and observed attack sequences. Given this
information, a threat score was assigned to different entities
of the network. More recently, a similar work that assigns an
overall risk score to entire networks as well as to individual
hosts was presented by Arneset al. [12].

Li et al. [14] proposed an approach to assess threat by
anticipating likely attacks. The authors were able to identify
short sequences of probable attack steps, and to construct
attack graphs by employing data-mining techniques on a data-
set containing representative attack actions.

The approach described in this paper is complementary to
risk assessment algorithms presented by Arneset al. [12] and
Holsoppleet al. [13]. Similar to Li et al. [14], likely sequences
of attack actions are identified. However, the objective here is
to study attack behavior and to predict an attacker’s future
actions. Unlike Qin and Lee [15] and Mehtaet al. [16],

2

who relied on expert knowledge and the pre-construction
of probabilistic attack graphs, the approach described here
loosely employs domain specific information.

Since network and behavior modeling are two complex
tasks, decoupling them will allow the selection of a special-
ized solution tailored to the problem at hand. The approach
presented here decouples the task of network modeling from
attack behavior modeling by employing universal predictors on
high-level attack information. The end result is a model ca-
pable of predicting probable attack actions given an attacker’s
unfolding sequence of malicious activities.

B. Sequence modeling

Modeling can be performed based on event types and their
frequency of occurrence, on the time properties of events
(duration, time interval, etc.), or on the ordering within event
sequences. In the cyber domain, these approaches have been
used when performing intrusion detection. For example, it
has been shown that statistical tests applied to TCP/IP packet
fields and the interval of arrival between packets are indicative
of Denial of Service (DoS) attacks [17], [18], [19]. Instead
of looking at event frequencies or their time properties for
intrusion detection, we model and project attack behavior by
investigating the sequential properties of correlated IDSalerts;
therefore, an overview of sequence modeling applied in the
context of intrusion detection is presented next.

The analysis of program behavior through sequences of
system calls is an important example of how sequence mod-
eling techniques have been applied in the cyber security
domain. As shown in [20], [21], [22], [23], [24] and [25],
a program exploited, such as through a buffer overflow attack,
will produce a sequence of system calls that often differs from
the ones generated during the program’s regular usage. Even
though evading attack methods have been explored [26], the
analysis of sequence of system calls is an important component
when detecting vulnerability exploitations.

Sequence modeling has also been used when finding ex-
ploitations through the command line. Models for users’
command line patterns are proposed in,e.g.,[27], [28]. Prob-
abilities for newly observed commands derived based on a
history of command sequences are used to determine whether
an attacker has hijacked an authentic user account, or whether
a disgruntled user is compromising the network. Similar
approaches have been employed when finding anomalies in
system log messages. Yeet al. [29] proposed to find anomalies
by computing the probability of a sequence of log messages
given the model generated under regular conditions.

Like the works described previously, the approach presented
here focuses on the ordering of events and on sequence
models such as Markov and Hidden Markov Models (HMMs).
However, unlike approaches described previously, the pro-
posed work isnot an intrusion detectionsystem. Instead,
it builds upon existing IDSs and alert correlators to extract
attack patterns and predict attack behavior from identified
and correlated IDS alerts. In summary, this paper addresses
the problem of projecting cyber attacks by looking at the
sequential properties of correlated IDS alerts belonging to
multi-stage attack tracks.

C. Prediction

One goal of the proposed sequence model is to predict prob-
able future actions belonging to an attack track. The problem
of prediction has been addressed from many fronts. For exam-
ple, consider a long sequence of symbols{x1, x2..., xm}. In
1992, Ehrenfeucht and Mycielski proposed a simple predictor
that looked for the longest repeating suffixes of a sequence,
which is called themaximal suffix [30]. Ehrenfeucht and
Mycielski predictedxm+1 to be equivalent to the symbol
following the most recent maximal suffix.

Jacquetet al. modified Ehrenfeucht’s and Mycielski’s pre-
dictor by searching for a fraction of the maximal suffix in
the original sequence [31]. The fraction of the maximal suffix
was set to a size⌈αDm⌉ such that the fractional suffix
would occur more than twice in the original string. Each of
such occurrences was called a marker. The algorithm then
performs a majority vote among the symbols that immediately
follow the markers. It was shown that this scheme yields to
a universal predictor, which is an optimal predictor whose
average error converges to the minimum regardless of the
generating source, as long as the source is stationary [31].
Other universal predictors have also been proposed, including
the seminar paper by Federet al. [32].

This work investigates the use of several finite-context
models (also known as Markov Models), including a Variable
Length Markov Model (VLMM). Similar to the algorithm
proposed by Jacquetet al. , finite-context based predictors also
take into account the frequency count of previously observed
symbols and their contexts. However, in addition to being able
to extrapolate from these sequences when anticipating likely
future attack actions, the model also allows for the calculation
of Pn(x), which is the probability of occurrence ofx given that
ann-order model has been created from several representative
attack sequences. A detailed description of the approach and
the proposed algorithm is given next.

III. M ETHODOLOGY

A. Attack track preprocessing

Attack tracks are one possible byproduct of running a
correlation engine on raw IDS alerts. These tracks consist of
ordered collections of alerts belonging to a single multi-stage
attack. An XML representation of a partial attack sequence is
shown in Figure 1. Each track is composed of several<Alert>
tags and other sub-tags. As shown next, an attack behavior
model is built based on information contained in these fields.

Let the collection of attack tracks beΨ = {σi, i =
1, 2, 3...}, where each attack trackσi is a time-stamped
ordered set of intrusion alerts{ai,1, ai,2, ai,3...}. Let ai,j be
an intrusion alert composed of many fields(v1, v2, v3...). For
example,v1 may represent the type of exploitation method of
ai,j , while v2 may represent the attack target IP, and so on.

σi =
{

ai,1 , ai,2 , ai,3 , ...
}

=











v1

v2

...





i,1

,





v1

v2

...





i,2

,





v1

v2

...





i,3

, ...







3

<Track>
<Alert>

<Snort>
<DateTime>

2005-10-04 14:34:47.503911
</DateTime>
<Description>

ICMP PING NMAP
</Description>
<Protocol>ICMP</Protocol>
<Source IP>192.168.222.4</Source IP>
<Dest IP>100.20.0.0</Dest IP>
<GId>1</GId>
<SId>469</SId>
<SId rev>3</SId rev>
<Classification>

Attempted Information Leak
</Classification>
<Priority>2</Priority>

</Snort<
<Sensor ID>snort232</Sensor ID>
<Category>Recon Scanning</Category>

</Alert>
<Alert> ... </Alert>

</Track>

Fig. 1. A partial attack track example in XML.

Let ai,j ∈ Ω whereΩ is the space defined by the set of fields
of an alert message. Note that the richness of the set of fields
of an alert message depends on the types of IDSs deployed
and on the correlation engine used to create attack tracks.

An important step in the proposed approach is to translate
each attack trackσi ∈ Ψ into a sequence of symbolssi =
{xi,1, xi,2, xi,3, ...}, where each symbol represents an attack
action captured by an IDS alert. For example, symbolxi,j

represents thejth alert of trackσi. Once attack tracks have
been converted, different sequence modeling schemes, such
as various Markov models, may be used to characterize their
corresponding sequences of malicious actions.

When building the behavior model, not all IDS alert fields
must be considered. Often, one is interested in a subspace of
Ω. For example, if only thekth alert field is relevant, thenΩk

is the space in whichai,j = (0, 0, ..., vk, 0...). In this work,
the alert fields that defineΩ are shown in bold in Figure 1.
Three different subspaces ofΩ are considered. One subspace
takes into account the attack description (Ωd), another takes
into account the category of the attack (Ωc), and one accounts
for the destination IP of the attack combined with the attack’s
category (Ωt). These are derived from the<Description>,
<Category> and<Dest IP> tags of Figure 1.

Alert description contains a detailed account of the at-
tack method, while the category field contains a coarser
definition of the attack. For example, one possible category
is an Intrusion Root. Within this category, there are WU-
FTP exploitations, different WEB-IIS exploitations, and many
others that may lead to an intruder gaining root access to
a network computer. An initial analysis of the trade-offs in
creating models from information at high and low levels of
granularity (such as attack category versus description) was
presented in [33].

Different choices of alphabets are applicable to the proposed

VLMM approach; these choices may offer different insights
into attacker’s behavior. For example, description (Ωd) and
category (Ωc) fields reflect the attacker’s tendency in choosing
different reconnaissance and exploitation methods and are
used in this paper to analyze the effectiveness of modeling
at two different levels of granularity. The field ‘classification’
is another choice that captures the attacker’s method, but at a
granularity between category and description. The incorpora-
tion of destination IP of attack steps (Ωt) is also considered
since it allows the model to account for the path and ‘agility’
of the attacker. Further research can also explore the benefits
of employing additional subspaces ofΩ such as destination
port, protocol, and any combination of the fields.

<Track>
<Alert>

<Description>
ICMP PING NMAP

</Description>
<Dest IP>100.20.0.0</Dest IP>
<Category>

Recon Scanning
</Category>

</Alert>
<Alert>

<Description>
SCAN SOCKS Proxy attempt

</Description>
<Dest IP>100.10.0.1</Dest IP>
<Category>

Recon Scanning
</Category>

</Alert>
<Alert>

<Description>
WEB-IIS nsiislog.dll access

</Description>
<Dest IP>100.10.0.1</Dest IP>
<Category>

Intrusion Root
</Category>

</Alert>
</Track>

Fig. 2. Representing an attack track as different sequencesof symbols.

Figure 2 shows the conversion of a single attack track into
sequences of symbols. Each of the three alerts belonging to
the track is mapped into a different symbol depending on
the choice ofΩk, k ∈ {c, d, t}. From the point of view
of alert’s category, the two first attack actions in Figure
2 were caused by reconnaissance scanning activities, while
the third alert corresponds to an intrusion as root; therefore,
this track is translated to the sequence of symbolsAAB,
whereA corresponds to the category ReconScanning, andB
represents IntrusionRoot. From the point of view of the alert’s
description, the first two alerts were “ICMP PING NMAP”
and “SCAN SOCKS Proxy attempt,” while the intrusion was
an exploitation of the WEB-IIS server through the nsiislog
dynamically linked library (DLL). Therefore, this track is
translated toABC, where A corresponds to “ICMP PING
NMAP,” B to “SCAN SOCKS Proxy attempt,” andC to
“WEB-IIS nsiislog.dll access.”

Another important piece of information is the destination

4

of the attack steps, that is, the IP of the attack targets. When
taking into account the attack target IP, this track is translated
to AaB where A and a correspond to the category Re-
con Scanning, with the lowercase letter representing a change
in IP since the previous attack. That is, the transition in attack
target between the first and the second attack steps of Figure
2 is represented as a lowercase character. The third attack step
is represented as an uppercaseB, because its destination IP is
the same as the previous alert’s.

Sequences created based on the three subspacesΩk, k ∈
{c, d, t} are used to create three different models. These
sequences of symbols are the input to the attack projection
framework discussed in this paper.

B. Sequence modeling

The next task is to build a model that captures the ordering
properties of sequence symbols. Finite-context models, typi-
cally known as Markov Models, and finite-state models, also
known as Hidden Markov Models (HMMs), are two main
approaches to sequence characterization.

Finite-contextmodels assign a probability to a symbol based
on the context in which the symbol appears [34]. In annth

order finite-context model, an event is said to depend onn
previous observations, whereby the transition probability is
defined asPn{Xt+1 = x|Xt−n+1 = xt−n+1, ...,Xt = xt}.
On the other hand,finite-statemodels, also known as Hidden
Markov Models (HMMs), are composed of an observable part
(events), and a hidden part (states) [35]. Events are observed
with different probability distribution depending on the state
of the system.

For the results presented in this paper, attack tracks are
modeled with finite-context models because they allow us to
investigate how an attacker’s current actions are correlated
with recently observed ones. If IDS alerts belonging to a single
attack track represent several attack steps performed by an
intruder, then annth order finite-context model determines
the probability of a future attack step based on the attacker’s
n previous actions. Looking back at the example of Figure 2,
a finite-context model created based on attack categories (Ωc)
will help understand the relationship between root intrusions
that are preceded by reconnaissance activities. Similarly, a
model created from attack description (Ωd) contains data
at a finer level of granularity. In this case, the relationship
between different pings, scans, and WEB-IIS exploitations,for
examples, will be under analysis. In addition, incorporating
destination IPs (Ωt) allows the observation of how each
attacker navigates through the network.

For example, consider the sequence:

+FGGFGF∗ (1)

where+ and∗ represent the start and the end of a sequence,
andF andG correspond to Snort alerts ‘WEB-IIS nsiislog.dll
access’ and ‘WEB-MISC Invalid HTTP Version String’ re-
spectively. One may be interested in the probability of seeing
symbol G after having observedF . This is captured by the
first order Markov ModelP1{G|F}. In (1), F was followed
by G in two out of three occurrences ofF , and by∗ once;
therefore, a probabilityP1{G|F} = 2/3 is obtained. In our

work, numerousattack sequences will be taken into account
when computing the transition probabilities for each of the
nth order models.

A first order Markov model can be represented by a squared
transition probability matrix in which entrypi,j holds the
probability of a transition from statei to j. A second order
Markov model can be represented with a rectangular matrix
in which pij,k holds the probability of a transition into statek
given that statesi andj have been observed. Similarly, higher
order Markov models can be represented in matrix forms.

Instead of using several matrices, one for each model order,
this work implements different order Markov models using a
suffix tree. The complexity for finding a context of sizen and
its succeeding symbol (xn+1) in the suffix tree isO(n). Yet,
the suffix tree naturally holds all sub-contexts (suffixes) of a
sequence. In other words, it holds all fixed order models in
a single data structure. These models can then be combined
into a Variable Length Markov Model (VLMM) [34]. For
example, Figure 3 shows the suffix tree for the attack sequence
shown in (1). Notice that all suffixes and their frequencies are
captured by the tree:F∗, GF *, FGF∗, GFGF∗, GGFGF∗,
FGGFGF∗ and +FGGFGF∗. Figure 4 shows the pseudo
code for building a suffix tree from a set of attack sequences.

Fig. 3. Suffix tree for the finite sequence ‘+FGGFGF∗’.

C. Prediction

Let s = {x1, x2, ..., xm} be an unfolding sequence of attack
actions. Our objective is to predict the next action (xm+1)
given s and given a data-set containing representative attack
tracks. LetPn(x) denote the probability of the next symbol in
s beingx according to annth order Markov model. Note thatn
can be at mostm, which is the length of the already observed
context. For a given set of representative attack sequences,
the entire context of lengthm may not match any suffix in
the tree; that is, this newly observed sequences is not part
of the data-set. LetH be a set containing all suffixes of
representative attack tracks (in the case of this research,H
is contained in a suffix tree), andl be the size of the longest
suffix of s such thatsl = {xm−l+1, ..., xm} exists inH. A
VLMM determinesP (x) by combining or blendingPi(x),
∀ i = {−1, 0, 1, ..., l} according to (2). The intuition is that
past observations (captured by the symbols following suffixes
of s that exist inH) are representative of the future.

P (x) = P{Xm+1 = x} =
l

∑

j=−1

wj × Pj(x) (2)

The prediction process is illustrated in the pseudo code of
Figure 5. The model is capable of generalizing by combining
information belonging to previous observations that may be

5

learn sequence(string sequence)
for offset from 1 to sequence.lengthdo
current node = root
current node.incidentedge frequency += 1
for i from offset to sequence.lengthdo
child = current node.getchild(sequence[i])
if (child != null)
current node = child
current node.incidentedge frequency += 1

else
child = createBranch(currentnode,

sequence, i,
sequence.length - i)

break
end if

end for
end for

create branch(suffix tree nodeparent,
string sequence,
int offset, int length)

descendent[0] = parent
for i from 1 and j from offset, i < length + 1 do
new node = sequence[i]
new node.incidentedge frequency = 1
new node.parent = descendent[i -1]
descendent[i] = newnode

end for
return descendent[length]

Fig. 4. Suffix tree creation pseudocode

distinct from one another. The model uses a weighting scheme
to combine these distinct observations contained in the differ-
ent suffixes. The weights are computed in terms of escape
probabilities as shown in (3) withwl = 1 − el.

wj = (1 − ej) ×

l
∏

k=j+1

ek, −1 ≤ j < l (3)

Escape probabilities work by allocating “some code space
in each model to the possibility that a lower-order model
should be used to predict the next character” [34]. There are
different approaches to computing escape probabilities. An
empirical test between the methods described in [34] showed
no performance difference among them [33]. Therefore, a
method that allocates one additional count over and above the
number of times the context has been seen in each model
order was implemented due to its simplicity. Specifically,
ej = 1/(Cj + 1).

D. Realization of Proposed Methodology

The proposed methodology has three main components:
alphabet creation and update (where sequences of symbols are
created from attack tracks), sequence modeling, and predic-
tion. Because of the computational simplicity — polynomial
time for both sequence modeling and prediction — the entire
system can be developed as an off-line or a real-time process.
In the off-line mode, representative finite attack sequences are
fed into the system to train the suffix tree model, which is then
used to make predictions when live attacks are unfolding. In
the real-time case, individual attack actions are appendedto
the model as live attack sequences are unfolding. As the suffix
tree is built and updated with unfolding attack sequences, the
model adapts to newly observed symbols and sequences. This

predict(string context, characterc)
accumulatedescape = 1
for i from 1 to context.lengthdo
sub context =context[i, context.length]
appendcontext = subcontext & c
nom = # matches for appendcontext in suffix tree
denom = # matches for subcontext in suffix tree
probability = nom / denom
escapeprob = compute escape(context)
prediction = prediction + probability× (1 - escapeprob)

× accumulatedescape
accumulatedescape = accumulatedescape× escapeprob

end for

escapeprob = compute escape(context)
nom = number of matches forc in suffix tree
denom = total number of observed characters
probability = nom / denom
prediction = prediction + probability× (1 - escapeprob)

× accumulatedescape
accumulatedescape = accumulatedescape× escapeprob
probability = 1 / alphabetsize
prediction = prediction + probability× accumulatedescape

return prediction

compute escape(string context)
nom = number of characters followingcontext in suffix tree
denom = number of matches forcontext in suffix tree
escapeprob = 1 / (1 + denom)

return escapeprob

Fig. 5. Prediction pseudocode

adaptive ability, to be shown in Section IV-C, is critical since
attacks and attack sequences could evolve due to changes in
network configurations and discoveries of new vulnerabilities.

One implementation issue is that the real-time system will
eventually run out of resources (memory) if it is indefinitely
fed with new attack tracks. Future works will address questions
on capacity, pruning of the model, andminimum sufficient
statistics1. While the real-time implementation is more viable
for its usefulness in the real world, the off-line development
allows us to analyze the results in a more controlled setting,
where VLMM predictions for different sequences and different
symbols in the same sequence are made based on the same
model trained.

IV. EXPERIMENTS AND DISCUSSIONS

A. Experiment Setup

Both off-line and real-time implementations of the proposed
approach were tested: one to analyze the VLMM’s ability in
capturing sequential orders of cyber attacks, and another to
investigate the adaptiveness of the model to new attack actions
in a real-time environment. In the first experiment, a data-set is
randomly split into two halves. One half of the tracks are used
to train the attack behavior model, and the other half to testthe
model’s predictions. An important goal of this experiment is to
examine the effectiveness of predicting by combining multiple
fixed order Markov models. On the other hand, the second
experiment utilizes a real-time implementation of the VLMM
that processes alert messages one by one based on alert time
stamp. This experiment will demonstrate the methodology’s
ability to adapt to new attack scenarios.

1Minimum sufficient statistics refers to the most compact summary of the
data which retains all predictively-relevant information [36].

6

Note that the proposed methodology aims at projecting
future actions foreach attack track. Commonly known cyber
security data-sets, including those from the MIT Lincoln Lab
[37] [38], KDD Cup 99 [39] and Defcon [40], are crafted
for intrusion detection and, thus, do not have the notion of
attack tracks. More specifically, these data-sets are typically
used to separate malicious activities from normal ones, but
do not have the ground truth that specifies which malicious
activities are executed as part of a multi-stage attack. Thealert
messages in some of the public data-sets may be sent through
an alert correlator (such as those illustrated in Sections Iand
II) in order to produce correlated attack tracks. While this is
desirable in a real-life system, the lack of multistage scenarios
in these data-sets could introduce errors to the attack tracks,
and, consequently, affect the confidence in the results obtained
when analyzing the proposed attack projection system. In the
absence of a proper public data-set for our experiments, this
work utilizes one that is created for military applicationsand
contains the ground truth of attack tracks.

The data-set used in this research was created through
scripted multi-stage attacks performed on a VMware network2.
Note that the proposed methodology does not require knowl-
edge about specific network topology or configurations. As
network configuration or attack strategy evolves, the proposed
methodology shall adaptively adopt new symbols and new
sequences of symbols in the model. In fact, the data-set
contains different attack scenarios that target differentparts
of the network and utilize different exploitation methods.This
allows for testing the proposed system’s adaptiveness.

The network used for our reported results contains 7 internal
subnets (each having a number of user address spaces), 22
external servers, and 24 internal servers. Example servers
include IIS Web servers, MS Exchange Servers, FTP, and VPN
servers that run on various Linux and Windows OS’s. Five sets
of attack scenarios are executed, producing a total of 19,908
alerts and 2,559 attack tracks. The attack scenarios range
among CGI Overflow, Data Exfiltration, Phishing, and Deniel-
of-Service, and differ in the attack targets. Alert messages were
produced by Snort, Dragon, Apache, and IIS. A real-world op-
erational system should have a data alignment pre-processing
component that homogenizes alert messages produced by
different types of IDSs [9], [11]. A homogenization step was
not performed on the data-set used for this research. Instead,
we used solely Snort alerts, which encompass approximately
50% of the total alerts and cover 55% of the attack tracks.

Additional study of the data reveals that some attack tracks
contain a series of alert messages that are identical in every
single field except for the time stamps and the IDS reporting
the event. These messages could be duplicate alerts for the
same attack action, or they could indeed correspond to a
series of identical attack actions, which is not uncommon for
scripted attacks. Regardless, consecutively repeated alerts add
little value for a cyber attack projection system [33]. Thiswork
aims at extracting changes within attack tracks, and to predict
symbols that are different from the latest observed one in the

2A second data-set was created for a different network topology and tested.
It exhibits similar performance trends as the ones detailed inthis paper.

sequence. Therefore, repeated consecutive alerts are filtered,
which helps reduce the model size [33].

Let si = {xi,1, xi,2, ..., xi,m} be a recently observed and
unfolding sequence of attack actions captured by IDSs and
translated from an attack track. A prediction setP composed
of the most likely future steps is computed forxi,m+1, for
all sequencessi in the test-set. The prediction performance is
measured as the percentage of correctly predicted attacks over
the total number of predictions. They are given in terms of top-
1, top-2, and top-3 predictions. The termtop-n is used to refer
to a prediction set of sizen, |P | = n wheren = {1, 2, 3}. In
the case of top-1, a correct prediction means that the attacker
performed an action that corresponded to the symbol identified
by the model as the most likely to occur. Similarly, a correct
prediction in terms oftop-2andtop-3mean that the attacker’s
action is among the two and three most probable attack steps
identified by the model.

B. Experiment 1: Effectiveness of VLMM

Figure 6 shows the prediction results of different Markov
Models created from sequences mapped based on attack de-
scriptions (Ωd). The dash (‘-’) represent the prediction rate
when considering the symbol that is attributed the highest
probability of occurrence (top-1). Points marked with ‘×’ and
‘*’ represent top-2 and top-3 prediction rates, respectively.
Results from ten independent runs with random 50-50 split
training and testing sets are averaged and shown with one
standard deviation.

Fig. 6. Prediction rate using0th, 1st, 2nd, and3rd order models onΩd.

As mentioned in Section III, the relationship between an
attack action and the attacker’s recent behavior can be inferred
from the correlation of neighboring actions within a sequence.
When using a first order model, the next attack action is
predicted based on the immediate previous action. Similarly,
an nth order finite-context relates the next action with then
previous ones. For the results in Figure 6, attack actions were
predicted based on0, 1st, 2nd, 3rd order finite-context models
as well as a VLMM. For example, when top-3 is considered,
the correct prediction is about48% of the time in the case of
a 0-order predictor,59% for a 1st, 48% for 2nd, 35% for 3rd,
and68% for the VLMM.

The 0-order model, which predicts based on frequency
counts of previously observed attacks, yields performance

7

among the lowest. This suggests the importance of an at-
tacker’s previously observed actions when inferring his or
her next step. The1st order model performs better than
the 2nd and the3rd order models, indicating that the next
exploit has a strong correlation with the attacker’s immediate
previous action. This is intuitively correct, as the immediate
previous action often grant certain privileges for the attacker’s
next action. Also notice that VLMM outperforms the1st

order model, which suggests that, while higher order models
individually may not be a good indicator, they do introduce
additional information that is not captured by the1st order
model. The end result for the combined VLMM prediction is
a top-3 accuracy approaching70% when predicting specific
methods the attacker may use next during an ongoing attack.

Sequences can also be created based on attack categories
(Ωc). Figure 7 plots the prediction accuracy for the case of
Ωc. The results are impressive; the VLMM achieves 90%
accuracy when predicting the next attacktype in an ongoing
attack sequence. The finer the granularity of a data model,
the more information is needed in order for special cases to
be captured with statistical significance; therefore, withthe
same data-set, finer grained models are expected to have worse
prediction rates. This can be noticed by comparing Figures
6 (Ωd) and 7 (Ωc). Arguably, predicting at coarser levels
of granularity may also be advantageous given the dynamic
nature of exploitations. Since specific exploitation methods
can evolve due to configuration changes and discovery of new
vulnerabilities, modeling and predicting at coarser levels of
granularity may be more desirable because it provides network
analysts with overall directions instead of specific yet not
necessarily accurate predictions.

Fig. 7. Prediction rate using0th, 1st, 2nd, and3rd order models onΩc.

Since attack behavior can be very diverse, certain attack
sequences may be easier to predict than others. Information
entropy is a logical choice to measure the confidence or
uncertainty of each predicted action. LetHi be the entropy
of the ith symbol of s = {x1, x2, ..., xm} given a prediction
model. The larger the value forHi, the larger the uncertainty
associated with the attack stepXi.

Hi = −
∑

xi∈Ω

P{Xi = xi | X1 = x1, ...,Xi−1 = xi−1}

× log2 P{Xi = xi | X1 = x1, ...,Xi−1 = xi−1} (4)

Hi was calculated for all symbols in the testing data given a
VLMM. The values ofHi were combined into two categories
depending on whether the symbol was correctly or incorrectly
predicted. Results are presented in Table I. Notice that, despite
the large standard deviation, symbols that were mispredicted
have, on average, higher entropy. Further investigation will
help us understand this large fluctuation.

TABLE I
ENTROPY OF CORRECTLY PREDICTED AND MISPREDICTED ATTACK STEPS

FOR DIFFERENT ATTACK ACTION SUBSPACES.

Category (Ωc) Category IP (Ωt) Description (Ωd)
c 0.62 ± 0.48 .91 ± .60 1.07 ± 0.69

i 0.93 ± 0.63 1.41 ± .81 1.35 ± 0.71

c correct predictions
i incorrect or mispredictions

In addition to entropy, average log-loss was used to measure
the complexity of an entire attack sequence. The greater
the probability assigned by a predictor to the symbols of a
sequence, the smaller is the sequence’s average log-loss. In
this work, average log-loss is used to classify a sequence as
commonor sophisticated. Let P be a predictor that assigns
a probabilityP (xi,j) to symbolxi,j . Then, given a sequence
si = {xi,1, xi,2, ...xi,m}, the average log-loss is defined as

l(P, si) = −
1

m

m
∑

j=1

log P (xi,j |xi,1, ..., xi,j−1) (5)

For the results presented on Table II, the VLMM was used
as the predictorP , and the average log-loss of each sequence
in the test-set was computed based on (5). A threshold value
of T is used when classifying attack sequences as common
l(P, s) ≤ T , versus sophisticatedl(P, s) > T . Table II shows
the prediction rates of common and sophisticated sequences
classified based on different values ofT chosen empirically.
Notice that results based on different attack action subspaces
are given. When comparing the two sets, one would expect
the higher log-loss sequences (sophisticated set) to have lower
prediction rates. The results shown in Table II are in accor-
dance with this intuition.

TABLE II
PREDICTION RATES OF COMMON AND SOPHISTICATED SEQUENCES

CLASSIFIED BY THRESHOLDING THEIR AVERAGE LOG-LOSS.

Threshold Category Category IP Description
T Ωc Ωt Ωd

c ≤ 1.5 0.91 0.86 -
s > 1.5 0.7 0.52 0.52

c ≤ 2.0 0.83 0.91 0.85

s > 2.0 0.69 0.50 0.51

c ≤ 2.5 0.79 0.79 0.80

s > 2.5 0.65 0.48 0.49

c ≤ 3.0 0.77 0.66 0.71

s > 3.0 0.60 0.46 0.47

c common sequences
s sophisticated sequences

Sequences created based on attack description (Ωd) and

8

attack category (Ωc) model the transitions within attack meth-
ods chosen by an intruder. Another logical procedure is to
characterize attack behavior with regards to how an attacker
maneuvers within a network. This is possible when attack
destination IP is incorporated into the model. Extending the
use ofΩc, a new set of sequences are created according to
the tendency of an attack action to happen at the same or at
a different target machine from the immediate previous action
(Ωt). The idea behind this approach is to examine the agility
of each attack track.

When incorporating the destination IP into the model (Ωt),
we noticed that only2% of the DoS attack actions were
incurred on a different machine than the one targeted by
the immediate previous action. DoS is an attempt to make
a computer resource unavailable to its intended users by
saturating the victim machine with external communications
requests; therefore, this low tendency for DoS to cover several
distinct machines within the same attack sequence is expected.
On the other hand,21.6% and16.7% of the “data exfiltration”
and “backdoor, trojan, virus and worm” attacks happened on
a different target machine from their preceding attack actions.
This suggests that “data exfiltration” and “backdoor, trojan,
virus and worm” are more ‘agile,’ or more likely to target
multiple machines in a network.

Figure 8 provides an insightful representation for these
attack transitions. The x-axis represents the number of tran-
sitions in attack target within an attack sequence. The y-axis
represents the number of unique target machines visited by the
attack sequence; that is, the number of distinct destination IPs.
For example, the point(9, 3) represents a sequence in which
the attacker hopped9 times across3 different machines. The
size of the squares in Figure 8 are logarithmically proportional
to the number of attack tracks that fall within the given point.
For example, most of the attack sequences in our data lie in
(0, 1), which is represented by the large square. The(0, 1)
coordinate tells that the attacker targeted only one machine;
therefore there are no transitions within his or her attack track.

Fig. 8. The number of unique targets visited versus the number of target
transitions within the attack sequences.

Figure 8 can be used to characterize attack behavior. Points
close to they = 2 line that havex >> 1 represent attackers
that hop many times across a small number of machines.
For example, point(20, 3) represents an attack sequence
that contained20 transitions covering only three different
destination IPs. On the other hand, points closed to or at the

y = x + 1 line that havex >> 1 indicate attacks that hop
across many distinct machines.

Given the differences in target IPs and IP transitions, one
may hypothesize that the more ‘agile’ attack sequences are
more ‘sophisticated’ and harder to predict. A threshold of
T = 2.5 was chosen to classify roughly half of the sequences
in the data-set as common and half as sophisticated based
on their average log-loss. Then, the number of target IP
transitions and the prediction rate for the sophisticated and the
common attack sequences was computed as shown in Table
III. Despite the large deviations, the significant difference in
the average IP transitions (3.71 versus 0.50) suggests that
the more agile multi-stage attacks are likely to exhibit rare
ordering in attack actions and are harder to predict. Note that
the approach presented in this paper allows the examination
and classification of attack sequences based on target IPs
without requiring information about network topology and
system configurations.

TABLE III
AVERAGE NUMBER OF ATTACK TARGET TRANSITIONS FOR SEQUENCES

THAT WERE CLASSIFIED AS COMMON AND SOPHISTICATED.

Threshold (T) # transitions per seq Prediction rate
c ≤ 2.5 0.50± 1.40 0.79

s > 2.5 3.74± 4.71 0.48

c common sequences
s sophisticated sequences

C. Experiment 2: Real-time adaptation

Performance results shown in Experiment 1 can be im-
proved if the new attacks and attack sequences are incorpo-
rated into the model as they are observed. An implementation
that takes correlated alerts, one by one, and continuously
updates the model as it predicts is tested using the same
VMware data-set. For this second experiment, the entire data-
set is fed into the real-time system according to the time
stamp of the alerts. This real-time implementation is possible
because of the computational efficiency of the VLMM model
and prediction.

Figure 9 shows the window average prediction accuracies
(top-3) achieved by the system versus the total number of
injected alerts for theΩd andΩc subspaces. The window size
is approximately 100 alerts. This set of results reveals how
the real-time system performs as the model is trained with
more and more alert data. First, observe the initial transient
periods where the system has not yet observed enough alerts to
build an accurate model. After approximately 1,000 alerts,the
prediction accuracies rise but fluctuate around 75% and 95%
for Ωd and Ωc, respectively. The overall cumulative average
prediction accuracies for the entire data-set are 76.25% and
94.69% forΩd andΩc, respectively.

As expected, the overall performance improves by contin-
uously updating the model with new attacks and new attack
sequences. The fluctuation observed can be partially attributed
to the introduction of new symbols in the corresponding
alphabet. Figure 10 shows the percentage of symbols known
to the model as the alerts are injected. Note that with 1,000
alert injected, only 36% and 67% of symbols have occurred in

9

Fig. 9. Window average prediction accuracy (top-3) as alerts are injected to
the real-time system for the cases ofΩd andΩc.

Ωd andΩc, respectively. In fact, because the alerts are injected
according to their time stamps, which correspond to the attack
scenario they belong to, new symbols may not be seen by
the system until late in the simulated time period. Even with
new symbols being continuously introduced by different attack
scenarios, the system prediction accuracies remain between
55% ∼ 95% and between85% ∼ 100% for Ωd and Ωc,
respectively.

Fig. 10. Percentage of Symbols Observed as alerts are injected to the real-
time system for the cases ofΩd andΩc.

The number of symbols generally levels during the middle
of the five scenario sets, but each scenario contributes with
new symbols to thedescriptionalphabets. The last scenario
is an interesting case. It starts after∼8,000 alerts have been
observed and it introduces new specific attack methods to
the model as noticeable from Figure 10. For this reason, the
system performance drops temporarily. After 1,000 additional
alerts have been observed, the system performance rises again
to around 85%-90% accuracy. This phenomenon suggests the
adaptiveness of the proposed approach in the presence of
new attacks. Note that the new attacks can be introduced by
a combination of changes in network configuration and the
discovery of new exploits.

Note also that while the prediction performance fluctuates
for Ωd in the beginning of the last scenario, the use ofΩc

maintains a steady performance of 95%. This is encouraging
and reinforces the notion that assessing at a coarser level of
granularity helps the analysts focus on the right type of attacks
(as opposed to relying on software to suggest specific attacks
that may not have been observed with enough frequency in
order to yield accurate predictions). In fact, given his or her

a priori knowledge and experience on the specific network,
an analyst should probably know more about new (zero-day)
attacks than the system does.

The real-time implementation also attempts to predict that
a never-before-seen attack is about to happen. The system
does not predict exactly what new attack will happen; instead,
it predicts thatsomething newwill occur. In addition to the
regular symbols representing specific attack methods or attack
categories, each alphabet subspace contains a special symbol
to track the instances when a new attack happens for the first
time. When these instances occur, the suffix tree will update
for the branches leading to this symbol. Although there are few
such instances, incorporating this symbol in the VLMM allows
warning to be generated for new attacks. In our experiment,
the system is able to predict 18 out of 51 occurrences of
new attack methods (Ωd = 51). While 18/51 ≈ 35% is
not as impressive as the prediction accuracy presented earlier,
this result shows promises that VLMM is able to not only
adaptively train and predict attacks that have been observed,
but also provide warnings of new attacks.

V. CONCLUSION

This paper introduces a framework for the characterization
and prediction of cyber attack behavior. Built upon existing
technologies, namely, IDSs and alert correlation engines,the
proposed approach aims at capturing the sequential properties
residing in the correlated IDS alerts. Different from existing
approaches that heavily rely on network specific information,
our approach does not require the modeling of network
configuration and system vulnerabilities. This separationis
accomplished by applying ideas from universal predictors on
high-level attack information. Specifically, the behaviortrends
exhibited in various fields of IDS alerts are captured via
VLMMs. Our results demonstrate that sequential properties,
i.e., , the 1st, 2nd, 3rd,... order Markov models, are all
beneficial, and a combination of them via VLMM leads to
the best prediction accuracy. Information theory based metrics,
such as entropy and log-loss, are proposed as indicators of the
prediction quality.

Historical and ongoing alert sequences are used to build and
update suffix tree models that store statistical information for
VLMM predictions. Since it does not require specific network
information, the proposed methodology is able to adapt to new
attacks and new attack sequences, regardless of changes in
network configurations or discoveries of new exploits. Our
results demonstrate that, soon after new attack scenarios are
introduced, the prediction accuracy rises as the model starts
capturing sufficient statistics for the new attacks and attack
sequences. The new attack predictions will not be diluted by
the historical sequences as the new symbols and new symbol
sequences are different from the old ones.

We believe that the battle against cyber attacks goes be-
yond password protection, encryption, intrusion detection, and
alert correlation. Having these components is essential for
protected network operations and usage; however, a proactive
measure that projects ongoing attack actions is crucial for
timely mitigation of cyber attack impacts. In order to create
a comprehensive assessment of cyber attacks, we propose the

10

presented approach to be considered as part of the cyber attack
projection solution, complementing the projection schemes
that depends on network specific information.

ACKNOWLEDGMENT

The authors would like to thank Jared Holsopple, Moises
Sudit, John Salerno, George Tadda and Michael Hinman for
their valuable inputs. This work is funded through the National
Center for Multisource Information Fusion (NCMIF) grant
under the technical supervision of AFRL/IFEA.

REFERENCES

[1] Stefan Axelsson. Intrusion detection systems: A survey and taxonomy.
Technical Report 99-15, Chalmers University, 2000.

[2] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy
of intrusion-detection systems.The International Journal of Computer
and Telecommunications Networking, 31:805–822, 1999.

[3] Tim Bass. Intrusion detection systems and multisensor data fusion.
Communications of the ACM, 43:99–105, 2000.

[4] John R. Goodall, Wayne G. Lutters, and Anita Komlodi. The work
of intrusion detection: rethinking the role of security analysts. In
Proceedings of the Americas Conference on Information Systems, pages
1421–1427, 2004.

[5] Fréd́eric Cuppens. Managing alerts in a multi-intrusion detection
environment. InProceedings of the17th Anual Computer Security
Applications Conference, pages 22–31, 2001.

[6] Oliver Dain and Robert K. Cunningham. Fusing a heterogeneous alert
stream into scenarios. InProceedings of ACM Workshop on data mining
for security applications, November 2001.

[7] Samuel King, Morley Mao, Dominic Lucchetti, and Peter Chen. En-
riching intrusion alerts through multi-host causality. InProceedings of
the Network and Distributed Systems Security Symposium, 2005.

[8] Peng Ning, Yun Cui, and Douglas Reeves. Analyzing intensive intrusion
alerts via correlation. InProceedings of the9th ACM Conference on
Computer & Communications Security, 2002.

[9] Adam Stotz and Moises Sudit. INformation Fusion Engine for Real-
time Decision making (INFERD): A perceptual system for cyber attack
tracking. InProceedings of the International Conference on Information
Fusion, 2007.

[10] Alfonso Valdes and Keith Skinner. Probabilistic alertcorrelation. In
Proceedings of the 4th International Symposium on Recent Advances in
Intrusion Detection (RAID), volume 2212, pages 54–68, 2001.

[11] Frederik Valeur, Giovanni Vigna, Christopher Kruegel, and Richard A.
Kemmerer. A comprehensive approach to intrusion detection alert
correlation. IEEE Transactions on Dependable and Secure Computing,
01(3):146–169, 2004.

[12] André Arnes, Frederik Valeur, and Richard Kemmerer. Using hidden
markov models to evaluate the risk of intrusions. InProceedings of the
International Symposium of the Recent Advances in Intrusion Detection
(RAID), Hamburg, Germany, 2006.

[13] Jarred Holsopple, Shanchieh J. Yang, and Moises Sudit.TANDI: Threat
Assessment of Network Data and Information. InProceedings of SPIE
Security and Defense Symposium: Multisensor, MultisourceInformation
Fusion: Architectures, Algorithms, and Applications, 2006.

[14] Zhitang Li, Jie Lei, Li Wang, and Dong Li. Assessing attack threat by
the probability of following attacks. InProceedings of the International
Conference on Networking, Architecture, & Storage, pages 91–100,
2007.

[15] Xinzhou Qin and Wenke Lee. Attack plan recognition and prediction
using causal networks. InProceedings of the20th Annual Computer
Security Applications Conference, pages 370–379, 2004.

[16] Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund M. Clarke,
and Jeannette Wing. Ranking attack graphs. InProceedings of the
International Symposium on the Recent Advances in Intrusion Detection
(RAID), September 20-22 2006.

[17] Laura Feinstein, Dan Schnackenberg, Ravindra Balupari, and Darrell
Kindred. Statistical approaches to DDoS attack detection and response.
In Proceedings of the DARPA Information Survivability Conference and
Exposition, volume 1, pages 303–314, 2003.

[18] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker,
and Stefan Savage. Inferring Internet Denial-of-Service activity. ACM
Transactions on Computer Systems, pages 115–139, 2006.

[19] Kihong Park and Heejo Lee. On the effectiveness of probabilistic packet
marking for IP traceback under Denial of Service Attack. InProceedings
of IEEE INFOCOM, pages 338–347, 2001.

[20] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, andThomas A.
Longstaff. A sense of self for Unix processes. InProceedinges of IEEE
Symposium on Research in Security and Privacy, pages 120–128, 1996.

[21] Calvin Ko, Manfred Ruschitzka, and Karl Levitt. Execution monitoring
of security-critical programs in distributed systems: a specification-based
approach. InProceedings of IEEE Symposium on Security and Privacy,
pages 175–187, 1997.

[22] Andrew Kosoresow and Steven Hofmeyr. Intrusion detection via system
call traces.IEEE Software, 14:35–42, Sep/Oct 1997.

[23] Wenke Lee, Salvatore J. Stolfo, and Philip K. Chan. Learning patterns
from Unix process execution traces for intrusion detection. In Pro-
ceedings of Workshop on AI Approaches to Fraud Detection andRisk
Management, pages 50–56, 1997.

[24] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detect-
ing intrusion using system calls: Alternative data models. In Proceedings
of IEEE Symposium on Security and Privacy, pages 133–145, 1999.

[25] Nong Ye, Xiangyang Li, Qiang Chen, Syed M. Emran, and Mingming
Xu. Probabilistic techniques for intrusion detection based on computer
audit data.IEEE Transactions on Systems, Man and Cybernetics, pages
266–274, 2001.

[26] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion
detection systems. InProceedings of the9th ACM Conference on
Computer and Communications Security, pages 255–264, 2002.

[27] Wen-Hua Ju and Yehuda Vardi. A hybrid high-order markov chain model
for computer intrusion detection. Technical Report 2, National Institute
of Statistical Sciences, 1999.

[28] Terran Lane and Carla Brodley. Temporal sequence learning and data
reduction for anomaly detection. InACM Transactions on Information
and System Security, volume 2, pages 295–331, 1999.

[29] Nong Ye, Yebin Zhang, and Connie M. Borror. Robustness of the
markov-chain model for cyber-attack detection.IEEE Transactions on
Reliability, 53:116–123, 2004.

[30] Andrzej Ehrenfeucht and Jan Mycielski. A pseudorandomsequence –
how random is it?American Mathematical Monthly, 99:373–375, 1992.

[31] Philippe Jacquet, Wojciech Szpankowski, and Izydor Apostol. A
universal predictor based on pattern matching.IEEE Transactions on
Information Theory, 48:1462–1472, 2002.

[32] M. Feder, N. Merhav, and M. Gutman. Universal predictionof individual
sequences.IEEE Transactions on Information Theory, 38:1258–1270,
July 1992.

[33] Daniel S. Fava. Characterization of cyber attacks through variable length
markov models. Master’s thesis, Rochester Insitute of Technology, 2007.

[34] Timothy C. Bell, John G. Cleary, and Ian H. Witten.Text Compression.
Prentice Hall, 1990.

[35] Lawrence R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. InProceedings of the IEEE,
volume 77, pages 257–286, 1989.

[36] Cosma R. Shalizi and Kristina L. Shalizi. Blind construction of optimal
nonlinear recursive predictors for discrete sequences. InProceedings
of the20th Conference on Uncertainty in Artificial Intelligence, pages
504–511, 2004.

[37] Kristopher Kendall. A database of computer attacks for the evaluation
of intrusion detection systems. Master’s thesis, Massachusetts Institute
of Technology, 1999.

[38] Massachusetts Institute of Technology Lincoln Laboratory. DARPA
intrusion detection evaluation, 2001.http://www.ll.mit.edu/
IST/ideval/data/data_index.html.

[39] KDD Cup. KDD Cup data, 1999.http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html.

[40] DEFCON conference. DEFCON capture the flag (CTF) contest.
http://www.defcon.org/.

