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Abstract—Previous works in the area of network security have a Variable Length Markov Model (VLMM) created from
emphasized the creation of Intrusion Detection Systems (IDSs) previously observed as well as ongoing attack sequences.
to flag malicious network traffic and computer usage, and the The method presented in this paper borrows from sequence

development of algorithms to analyze IDS alerts. One possible . - .
byproduct of correlating raw IDS data are attack tracks, which modeling techniques that have successfully been implesdent

consist of ordered collections of alerts belonging to a single multi- In fields such as text compression, computational biology
stage attack. This paper presents a Variable Length Markov (DNA sequence analysis), and data forecasting. By intérge
Model (VLMM) that captures the sequential properties of attack  cyper attacks as sequences of malicious actions observed
tracks, allowing for the prediction of likely future actions on through IDS alerts, this research is able to investigate the

ongoing attacks. The proposed approach is able to adapt to newly L . . .
observed attack sequences without requiring specific network application of sequence modeling techniques in the context

information. Simulation results are presented to demonstrate the Of cyber threat projection.
performance of VLMM predictors and their adaptiveness to new

attack scenarios. [l. RELATED WORK

A. Previous approaches

|. INTRODUCTION Qin and Lee were one of the first to propose a high level
attack projection scheme [15]. They investigated the usanof
The growth of information in digital format and the pervaalert correlation system that was also capable of perfaymin
sion of computer networks into human activity have amplifiegtack prediction. It applied Bayesian networks to IDS taler
the importance of managing data access and the channgl$rder to identify attack sequences and to predict passibl
through which data flows. Information and cyber securitijture attack steps. Its high level correlation was based on
are multifaceted and entail the provision of user accourpfan recognition and required the creation of several ptessi
and passwords to protect data, the encryption of commattack plans by domain experts. Challenging steps in such an
nication mediums, the imposition of network access rulegpproach ard) the creation of attack plans that are general
through firewalls, etc. In addition to such preventive me)o enough to capture a myriad of attack behavior, but specific
Intrusion Detection Systems (IDSs) are often employed &hough to provide insights about an attacker’s goals, Bnd
monitor networks for traces of malicious actions and ségurithe search for a match between an unfolding multistagekattac

breaches. IDSs work by performing anomaly detection @mong the many devised attack plans. Similar to Qin and
misuse detection on host computers or network traffic. $¢veree’'s work, Mehtaet al. [16] also employs pre-constructed

IDS solutions have been proposed, and taxonomies have bggibabilistic attack graphs to rank attack tracks.

provided [1], [2]. The problem of projecting possible future cyber attacks was
As the complexity and size of networks grew, the increasirgso explored by Holsopplet al. [13]. In this work, three
number of deployed IDSs generated a number of alerts that bé&eces of information were used in order to identify likely
came overwhelming to human analysts [3], [4]. Many methodstack targets: network topology, a mapping between sesvic
for creating comprehensive alert reports have been propos@d host computers, and observed attack sequences. Gisen th
as potential solutions to this problem. Some of these effoihformation, a threat score was assigned to different ieatit
were in the area of alert aggregation [5], [6], alert cotiefa of the network. More recently, a similar work that assigns an
[71, [8], [9], [10], [11], current and future threat analgqil2], overall risk score to entire networks as well as to individua
[13], and projection of likely future attack actions [1415]. hosts was presented by Arnesal. [12].
Among these, threat projection is an important step towardsLi et al. [14] proposed an approach to assess threat by
the mitigation of critical attacks. anticipating likely attacks. The authors were able to idgnt
Previous works in the area of attack projection heavily relshort sequences of probable attack steps, and to construct
on a priori knowledge of network and system configurationaftack graphs by employing data-mining techniques on a data
and are, therefore, challenged by the diversity and the- eveet containing representative attack actions.
changing nature of system settings and exploitation mathod The approach described in this paper is complementary to
Alternatively, the framework presented here models malisi risk assessment algorithms presented by Aeteal. [12] and
network activity and extracts relevant information abont aHolsoppleet al.[13]. Similar to Liet al. [14], likely sequences
attacker’s overall behavior and intent without requirimpWl-  of attack actions are identified. However, the objectivestisr
edge of the underlying network configuration. The attackerfo study attack behavior and to predict an attacker’s future
probable future attack steps and behavior are inferred frauntions. Unlike Qin and Lee [15] and Meh&t al. [16],



who relied on expert knowledge and the pre-constructidh. Prediction
of probabilistic attack graphs, the approach describea her One goal of the proposed sequence model is to predict prob-

loosely employs domain specific information. able future actions belonging to an attack track. The prable

Since network and behavior modeling are two comple I
. . . ._Of prediction has been addressed from many fronts. For exam-
tasks, decoupling them will allow the selection of a specia] :

e, consider a long sequence of symbfls, z5..., 2, }. In

ized solution tailored to the problem at hand. The approa S . .
presented here decouples the task of network modeling frgﬂwgz’ Ehrenfeucht and Mycielski proposed a simple prediicto

attack behavior modeling by emploving universal predictmr at looked for the longest repeating suffixes of a sequence,
. deling by employing ap which is called themaximal suffix[30]. Ehrenfeucht and
high-level attack information. The end result is a model c

pable of predicting probable attack actions given an agigek %/Iy0|ellsk| predicted,, 1 10 b.e equwglent to the symbol
. . - following the most recent maximal suffix.
unfolding sequence of malicious activities.

Jacquetet al. modified Ehrenfeucht's and Mycielski's pre-
B. Sequence modeling dictor by searching for a fraction of the maximal suffix in

Modeling can be performed based on event types and th&f Original sequence [31]. The fraction of the maximal suffi
frequency of occurrence, on the time properties of evert@S Set to a siz€aDy,] such that the fractional suffix
(duration, time interval, etc.), or on the ordering withiveat would occur more than twice in the original string. Each of
sequences. In the cyber domain, these approaches have 5¥&R occurrences was called a marker. The algorithm then
used when performing intrusion detection. For example, performs a majority vote among the symbpls that |mm<_ed|ately
has been shown that statistical tests applied to TCP/IPepaCfIQ”OV\,’ the marke'rs. It was shpwn that _th's scheme yields to
fields and the interval of arrival between packets are iriviga @ Universal predictor, which is an optimal predictor whose
of Denial of Service (DoS) attacks [17], [18], [19]. InsteadVerage error converges to the minimum regardless of the
of looking at event frequencies or their time properties fdf€nerating source, as long as the source is stationary [31].
intrusion detection, we model and project attack behavjor (Pther universal predictors have also been proposed, iimgud
investigating the sequential properties of correlated HI¥sts; the sgmlnar pfalper t_’y Fedet al. [32]. o
therefore, an overview of sequence modeling applied in theThiS work investigates the use of several finite-context
context of intrusion detection is presented next. models (also known as Markov Models), including a Variable

The analysis of program behavior through sequences lgin9th Markov Model (VLMM). Similar to the algorithm
system calls is an important example of how sequence m(ﬂjppqsed by Jacquet al., finite-context based predlctors also
eling techniques have been applied in the cyber securfff}}(e into account the frequency count of previously obskrve
domain. As shown in [20], [21], [22], [23], [24] and [25] symbols and their contexts. However, in addition to beinig ab
a program exploited, such as through a buffer overflow ajtadR €xtrapolate from these sequences when anticipatingy like
will produce a sequence of system calls that often diffesefr fUture attack actions, the model also allows for the catewia
the ones generated during the program’s regular usage. EQ&A (%), which is the probability of occurrence ofgiven that
though evading attack methods have been explored [26], fan-order model has been created from several representative
analysis of sequence of system calls is an important comrpon@ttaCk sequences. A detailed description of the approadh an

when detecting vulnerability exploitations. the proposed algorithm is given next.
Sequence modeling has also been used when finding ex-
ploitations through the command line. Models for users’ [Il. METHODOLOGY

command line patterns are proposedsdry.,[27], [28]. Prob- .
abilities for newly observed commands derived based onAa Attack track preprocessing
history of command sequences are used to determine whethekttack tracksare one possible byproduct of running a
an attacker has hijacked an authentic user account, or ehettorrelation engine on raw IDS alerts. These tracks consist o
a disgruntled user is compromising the network. Similasrdered collections of alerts belonging to a single mukige
approaches have been employed when finding anomaliesattack. An XML representation of a partial attack sequeisce i
system log messages. ¥eal.[29] proposed to find anomaliesshown in Figure 1. Each track is composed of severlert>
by computing the probability of a sequence of log messagesys and other sub-tags. As shown next, an attack behavior
given the model generated under regular conditions. model is built based on information contained in these fields
Like the works described previously, the approach presente Let the collection of attack tracks b& = {o;, i =
here focuses on the ordering of events and on sequencge 3..}, where each attack track; is a time-stamped
models such as Markov and Hidden Markov Models (HMMsprdered set of intrusion alertg; 1, a; 2, a; 3...}. Let a; ; be
However, unlike approaches described previously, the pran intrusion alert composed of many fields, v, vs...). For
posed work isnot an intrusion detectionsystem. Instead, example,y; may represent the type of exploitation method of
it builds upon existing IDSs and alert correlators to extrae; ;, while v, may represent the attack target IP, and so on.
attack patterns and predict attack behavior from identified

and correlated IDS alerts. In summary, this paper addresses? = {an, @z, as ]
the problem of projecting cyber attacks by looking at the U1 U1 U1
sequential properties of correlated IDS alerts belongimg t = V2 . | V2 yee

multi-stage attack tracks. v ) an o ) in ) is



<Track> VLMM approach; these choices may offer different insights
<Alert> into attacker’'s behavior. For example, descriptidy) and

<Snort> category (2.) fields reflect the attacker’s tendency in choosing

<DateTime>

2005-10-04 14:34:47.503911
</DateTime>
<Description>

ICMP PING NMAP
</Description>
<Protocol>ICMP</Protocol>
<Source_IP>192.168.222.4</Source_IP>
<Dest_IP>100.20.0.0</Dest_IP>
<Gld>1</Gld>
<Sld>469</Sld>
<Sld_rev>3</Sld_rev>
<Classification>

Attempted Information Leak
</[Classification>

different reconnaissance and exploitation methods and are
used in this paper to analyze the effectiveness of modeling
at two different levels of granularity. The field ‘classifiica’

is another choice that captures the attacker's method,tkat a
granularity between category and description. The ina@po
tion of destination IP of attack step8)) is also considered
since it allows the model to account for the path and ‘adility
of the attacker. Further research can also explore the benefi
of employing additional subspaces 8f such as destination
port, protocol, and any combination of the fields.

<Track>

<Priority>2</Priority>
</Snort<
<Sensor_ID>snort232</Sensor_ID>
<Category>Recon_Scanning</Category >
</Alert>
<Alert> ... </Alert>
</[Track>

Fig. 1. A partial attack track example in XML.

Let a; ; € Q where( is the space defined by the set of fields
of an alert message. Note that the richness of the set of fields
of an alert message depends on the types of IDSs deployed
and on the correlation engine used to create attack tracks.

An important step in the proposed approach is to translate
each attack track; € V¥ into a sequence of symbols =
{xi1,2i2,%;3,...}, where each symbol represents an attack
action captured by an IDS alert. For example, symbp)
represents thg!” alert of tracko;. Once attack tracks have
been converted, different sequence modeling schemes, such

<Alert>
<Description>
ICMP PING NMAP
</Description>
<Dest_IP>100.20.0.0</Dest_IP>
<Category>
Recon_Scanning
</Category>
</Alert>
<Alert>
<Description>
SCAN SOCKS Proxy attempt
</Description>
<Dest_IP>100.10.0.1</Dest_IP>
<Category>
Recon_Scanning
</Category>
</Alert>
<Alert>
<Description>
WEB-IIS nsiislog.dll access
</Description>
<Dest_IP>100.10.0.1</Dest_IP>

. . . <Category>
as various Markov models, may pg used to characterize their Intrusion_Root
corresponding sequences of malicious actions. <ICategory>
When building the behavior model, not all IDS alert fields <IAlert>
<[Track>

must be considered. Often, one is interested in a subspace of
Q. For example, if only thé:*" alert field is relevant, thefy;, Fig. 2. Representing an attack track as different sequesicegmbols.
is the space in whicty; ; = (0,0, ..., v, 0...). In this work,
the alert fields that defin€ are shown in bold in Figure 1.  Figure 2 shows the conversion of a single attack track into
Three different subspaces ©f are considered. One subspacgequences of symbols. Each of the three alerts belonging to
takes into account the attack descriptiddy), another takes the track is mapped into a different symbol depending on
into account the category of the attadk.}, and one accounts the choice ofQ;, k € {c,d,t}. From the point of view
for the destination IP of the attack combined with the ateackof alert’s category, the two first attack actions in Figure
category (2;). These are derived from theDescription~, 2 were caused by reconnaissance scanning activities, while
<Category- and <Dest IP> tags of Figure 1. the third alert corresponds to an intrusion as root; theegfo
Alert description contains a detailed account of the athis track is translated to the sequence of symhdl4B,
tack method, while the category field contains a coars@hereA corresponds to the category RecBoanning, and3
definition of the attack. For example, one possible categampresents IntrusiofRoot. From the point of view of the alert’s
is an Intrusion Root Within this category, there are WU-description, the first two alerts were “ICMP PING NMAP”
FTP exploitations, different WEB-IIS exploitations, andmga and “SCAN SOCKS Proxy attempt,” while the intrusion was
others that may lead to an intruder gaining root access d4a exploitation of the WEB-IIS server through the nsiislog
a network computer. An initial analysis of the trade-offs imlynamically linked library (DLL). Therefore, this track is
creating models from information at high and low levels offanslated toABC, where A corresponds to “ICMP PING
granularity (such as attack category versus descripticely WNMAP,” B to “SCAN SOCKS Proxy attempt,” and’ to
presented in [33]. “WEB-IIS nsiislog.dll access.”
Different choices of alphabets are applicable to the pregos Another important piece of information is the destination



of the attack steps, that is, the IP of the attack targets. Wheork, numerousattack sequences will be taken into account

taking into account the attack target IP, this track is ta@esl when computing the transition probabilities for each of the

to AeB where A and a correspond to the category Res!" order models.

con_Scanning, with the lowercase letter representing a changeA first order Markov model can be represented by a squared

in IP since the previous attack. That is, the transition tackt transition probability matrix in which entry; ; holds the

target between the first and the second attack steps of Figprebability of a transition from statéto j. A second order

2 is represented as a lowercase character. The third atigek $1arkov model can be represented with a rectangular matrix

is represented as an uppercdsebecause its destination IP isin which p;; 5, holds the probability of a transition into stalte

the same as the previous alert’s. given that states andj have been observed. Similarly, higher
Sequences created based on the three subsphgels € order Markov models can be represented in matrix forms.

{c,d,t} are used to create three different models. Theselnstead of using several matrices, one for each model order,

sequences of symbols are the input to the attack projectitnis work implements different order Markov models using a

framework discussed in this paper. suffix tree The complexity for finding a context of sizeand

its succeeding symbolz(, 1) in the suffix tree isO(n). Yet,

the suffix tree naturally holds all sub-contexts (suffixeEpo
The next task is to build a model that captures the orderiggquence. In other words, it holds all fixed order models in

properties of sequence symbols. Finite-context modefsi; tya single data structure. These models can then be combined

cally known as Markov Models, and finite-state models, alsatg a Variable Length Markov Model (VLMM) [34]. For

known as Hidden Markov Models (HMMs), are two mairexample, Figure 3 shows the suffix tree for the attack sequenc

approaches to sequence characterization. shown in (1). Notice that all suffixes and their frequencies a
Finite-contextmodels assign a probability to a symbol basegaptured by the tredis, GF*, FGF*, GFGF*, GGFGFx,

on the context in which the symbol appears [34]. In/dh  FGGFGF+ and + FGGFGF. Figure 4 shows the pseudo

order finite-context model, an event is said to dependioncode for building a suffix tree from a set of attack sequences.
previous observations, whereby the transition probabibt

defined aS.Pn{Xt+1 = .’E|Xt,n+1 = "L'tfn+17...7Xt = fl,'t}.

B. Sequence modeling

On the other handjnite-statemodels, also known as Hidden L. * e
Markov Models (HMMs), are composed of an observable part 3 F a--"'/; G "’_”(T‘_JGFG]_:SP
(events), and a hidden part (states) [35]. Events are obderv ,.-“";' ) 5 i
with different probability distribution depending on thtate it q —1 3 . B
of the system. e W GFGF:H\“'**- .

For the results presented in this paper, attack tracks are
modeled with finite-context models because they allow us
investigate how an attacker’'s current actions are coeélat
with recently observed ones. If IDS alerts belonging to @l8in ¢ prediction
attack track represent several attack steps performed by a .
intruder, then amn'® order finite-context model determines Lets = {z1, 22, ..., } be an unfolding sequence of attack

the probability of a future attack step based on the attzkef CONS: Our objective is to predict the next actian,(.)

n previous actions. Looking back at the example of Figure ?rgg?ss I?:t(; g'Vegei:;t?;et r(c:)(z)natt?llntlngfrtiirf]see?tsat:‘\rgioal‘t'tﬁck
a finite-context model created based on attack categdrigs ( ' n () P Ly Xt Sy !

H i th
will help understand the relationship between root intosi 5 b:”ggx ?fncosr,;ln\?vrt]? im: tr? rdlegl\/lﬁrk?\t/hmo?rel. ZIOtebthafv d
that are preceded by reconnaissance activities. SimilarlyCa € al mostz, chis the fength ot the already observe

model created from attack descriptiomdo contains data context. For a given set of representative attack sequences

at a finer level of granularity. In this case, the relatiopshithe entire context of lengtin may not match any suffix in

between different pings, scans, and WEB-IIS exploitatiéms, tok;eﬂt]reee&;tr;a;;, Eg;lnﬁve\/lya Osbeste?:riasir?i?\l;]eaaﬁesr&?ftixzzrtof
examples, will be under analysis. In addition, incor ti A . .
P y hora representative attack tracks (in the case of this resedich,

destination IPs allows the observation of how each ) ) i .
attacker navigaté(lst)through the network is contained in a suffix tree), ardbe the size of the longest

For example. consider the sequence: suffix of s such thats; = {z;,—141, ...,z } €Xists iNH. A
Pie, g | VLMM determines P(z) by combining or blendingP;(x),
+FGGFGFx 1) Vvi={-1,0,1,...,1} according to (2). The intuition is that

ast observations (captured by the symbols following sesfix
where+ andx represent the start and the end of a sequeng (cap y y ¢

and F' andG correspond to Snort alerts ‘WEB-IIS nsiislog.dll s that exist inH) are representative of the future.

access’ and ‘WEB-MISC Invalid HTTP Version String’ re- !

spectively. One may be interested in the probability of sgei P(z) = P{Xm =2} = ) w; x Pj(2) (2)
symbol G after having observed. This is captured by the j=-1

first order Markov ModelP;, {G|F}. In (1), F was followed The prediction process is illustrated in the pseudo code of
by G in two out of three occurrences df, and byx* once; Figure 5. The model is capable of generalizing by combining
therefore, a probability?, {G|F'} = 2/3 is obtained. In our information belonging to previous observations that may be

3. Suffix tree for the finite sequence FGGFGF'%'.



learn_sequencé string sequence ) predict( string context, character )
for offsetfrom 1 to sequence.lengthdo accumulatedescape = 1
current node = root for i from 1 to context.lengthdo
current node.incidentedge frequency += 1 sub context =context[ i, context.length ]
for i from offsetto sequence.lengthdo appendcontext = subcontext & ¢
child = currentnode.getchild( sequence[ i ]) nom = # matches for appencbntext in suffix tree
if (child !=null ) denom = # matches for sutontext in suffix tree
current node = child probability = nom / denom
current node.incidentedge frequency += 1 escapeprob =compute escapécontexrt)
else prediction = prediction + probabiliti (1 - escapeprob )
child = createBranch( curremoc_je, x accumulatedescape
sequence, |, accumulatedescape = accumulateelscapex escapeprob
sequence.length - i) end for
break
end if escapeprob =compute_escapécontext)
end for nom = number of matches ferin suffix tree
end for denom = total number of observed characters
probability = nom / denom
create branch( suffix_tree nodeparent, prediction = prediction + probability (1 - escapeprob )
string sequence, x accumulatedescape
int of fset, int length ) accumulatedescape = accumulatesscapex escapeprob
descendent[ 0 ] = parent e )
for i from 1 andj from offset, i < length + 1 do probgb_mty =1/ a_llp‘habgmze .
- Lo o prediction = prediction + probabilitik accumulatedescape
new_node = sequencel i ]
new_node.incidentedge frequency = 1 return prediction
gz\ggggg:na?ﬁni n:misozeendem[ i-1] compute_escapg string context ) ] ) ]
= nom = number of characters followingntext in suffix tree
end for denom = number of matches feontext in suffix tree
return descendentfength | escapeprob = 1 / (1 + denom )
Fig. 4. Suffix tree creation pseudocode return escapeprob

Fig. 5. Prediction pseudocode

distinct from one another. The model uses a weighting scheg@aptive ability, to be shown in Section IV-C, is criticahsé
to combine these distinct observations contained in tHerdif attacks and attack sequences could evolve due to changes in
ent suffixes. The weights are computed in terms of escaggwwork configurations and discoveries of new vulneraesit

probabilities as shown in (3) withy, =1 —e. One implementation issue is that the real-time system will
l eventually run out of resources (memory) if it is indefinjtel
w; = (1—¢j)x H e, —1<j <l (3) fed with new attack tracks. Future works will address questi
k=j+1 on capacity, pruning of the model, amdinimum sufficient

tisticd. While the real-time implementation is more viable
its usefulness in the real world, the off-line developine
ows us to analyze the results in a more controlled setting
ere VLMM predictions for different sequences and différe
bols in the same sequence are made based on the same

Escape probabilities work by allocating “some code spagéa
in each model to the possibility that a lower-order mod pr
should be used to predict the next character” [34]. There &
different approaches to computing escape probabilities. A
empirical test between the methods described in [34] sho :
no performance difference among them [33]. Therefore,naOdel trained.

method that allocates one additional count over and abave th IV. EXPERIMENTS AND DISCUSSIONS
number of times the context has been seen in each mogelExperiment Setup

order was implemented due to its simplicity. Specifically, Both off-line and real-time implementations of the probse
ej = 1/(Cj +1). approach were tested: one to analyze the VLMM’s ability in
D. Realization of Proposed Methodology capturing sequential orders of cyber attacks, and another t

The proposed methodology has three main componer{@{eStigat_e the ao!aptiveness of the_ model tq new attac{mx:ti
alphabet creation and update (where sequences of symisolsA@ réal-time environment. In the first experiment, a dataiss
created from attack tracks), sequence modeling, and predidomly splitinto two halves. One half of the tracks areduse
tion. Because of the computational simplicity — polynomidf train the attack behavior model, and the other half tottesst
time for both sequence modeling and prediction — the entifé®del’s predictions. Animportant goal of this experimentd
system can be developed as an off-line or a real-time proce@@mine the effectiveness of predicting by combining mleti
In the off-line mode, representative finite attack sequsrare 1X€d order Markov models. On the other hand, the second
fed into the system to train the suffix tree model, which isitheEXPeriment utilizes a real-time implementation of the VLMM
used to make predictions when live attacks are unfolding. {32t Processes alert messages one by one based on alert time
the real-time case, individual attack actions are appendedSt@mp. This experiment will demonstrate the methodology’s
the model as live attack sequences are unfolding. As thecsufiPility to adapt to new attack scenarios.
tree is built and updated with unfolding attack sequend®s, t 1yinimum sufficient statistics refers to the most compact summéathe
model adapts to newly observed symbols and sequences. Hais which retains all predictively-relevant informati@6].



Note that the proposed methodology aims at projectirsgquence. Therefore, repeated consecutive alerts aredilte
future actions foreach attack trackCommonly known cyber which helps reduce the model size [33].
security data-sets, including those from the MIT LincolrbLa Let s; = {x; 1,22, ...,2:,m} be a recently observed and
[37] [38], KDD Cup 99 [39] and Defcon [40], are craftedunfolding sequence of attack actions captured by IDSs and
for intrusion detection and, thus, do not have the notion tfanslated from an attack track. A prediction $etomposed
attack tracks. More specifically, these data-sets are djipic of the most likely future steps is computed foy,,,+1, for
used to separate malicious activities from normal ones, kalt sequences; in the test-set. The prediction performance is
do not have the ground truth that specifies which maliciouseasured as the percentage of correctly predicted attaeks o
activities are executed as part of a multi-stage attack.aléme the total number of predictions. They are given in terms pfto
messages in some of the public data-sets may be sent throligtop-2, and top-3 predictions. The tetap-nis used to refer
an alert correlator (such as those illustrated in Sectiomsd to a prediction set of size, |P| = n wheren = {1,2,3}. In
II) in order to produce correlated attack tracks. While tlsis ithe case of top-1, a correct prediction means that the atack
desirable in a real-life system, the lack of multistage aces performed an action that corresponded to the symbol idedtifi
in these data-sets could introduce errors to the attacksradby the model as the most likely to occur. Similarly, a correct
and, consequently, affect the confidence in the resultsraata prediction in terms ofop-2 andtop-3 mean that the attacker’s
when analyzing the proposed attack projection system.dn taction is among the two and three most probable attack steps
absence of a proper public data-set for our experiments, tidentified by the model.
work utilizes one that is created for military applicaticsusd i .
contains the ground truth of attack tracks. B. Experiment 1: Effectiveness of VLMM

The data-set used in this research was created througlrigure 6 shows the prediction results of different Markov
scripted multi-stage attacks performed on a VMware netivorkModels created from sequences mapped based on attack de-
Note that the proposed methodology does not require knowEriptions (2;). The dash (*-') represent the prediction rate
edge about specific network topology or configurations. Aghen considering the symbol that is attributed the highest
network configuration or attack strategy evolves, the psego probability of occurrence (top-1). Points marked with' ‘and
methodology shall adaptively adopt new symbols and neiv represent top-2 and top-3 prediction rates, respeéfive
sequences of symbols in the model. In fact, the data-dResults from ten independent runs with random 50-50 split
contains different attack scenarios that target differgmtts training and testing sets are averaged and shown with one
of the network and utilize different exploitation method@is Standard deviation.
allows for testing the proposed system’s adaptiveness.

The network used for our reported results contains 7 interna
subnets (each having a number of user address spaces), 22
external servers, and 24 internal servers. Example servers
include 1IS Web servers, MS Exchange Servers, FTP, and VPN
servers that run on various Linux and Windows OS’s. Five sets
of attack scenarios are executed, producing a total of 89,90
alerts and 2,559 attack tracks. The attack scenarios range Wb g { ]
among CGlI Overflow, Data Exfiltration, Phishing, and Deniel- { {( )}
of-Service, and differ in the attack targets. Alert messagere {
produced by Snort, Dragon, Apache, and IIS. A real-world op- 2o rt * top-3
erational system should have a data alignment pre-pracessi X %SEZE
component that homogenizes alert messages produced by o —T=F e e T
different types of IDSs [9], [11]. A homogenization step was
not performed on the data-set used for this research. bhstefdd. 6. Prediction rate using™, 1°¢, 24, and37¢ order models orf2,.
we used solely Snort alerts, which encompass approximately
50% of the total alerts and cover 55% of the attack tracks. As mentioned in Section lll, the relationship between an

Additional study of the data reveals that some attack tracR§ack action and the attacker's recent behavior can beréufe
contain a series of alert messages that are identical iry evm the correlation of neighboring actions within a secqueen
single field except for the time stamps and the IDS reportifhen using a first order model, the next attack action is
the event. These messages could be duplicate alerts for RFedicted based on the immediate previous action. Simpilarl
same attack action, or they could indeed Correspond toaﬁnth order finite-context relates the next action with the
series of identical attack actions, which is not uncomman f@revious ones. For the results in Figure 6, attack actione we
scripted attacks. Regardless, consecutively repeatest add Predicted based o, 1+, 2"¢, 3" order finite-context models
little value for a cyber attack projection system [33]. Tivisrk as well as a VLMM. For example, when top-3 is considered,
aims at extracting changes within attack tracks, and toigredthe correct prediction is abodB?% of the time in the case of
symbols that are different from the latest observed oneén th 0-order predictors9% for a 1°%, 48% for 2%, 35% for 374,

and68% for the VLMM.

2A second data-set was created for a different network tagoéond tested, 1 he 0-order mOdelv which predicts bas_ed on frequency
It exhibits similar performance trends as the ones detailelipaper. counts of previously observed attacks, yields performance
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among the lowest. This suggests the importance of an at-H; was calculated for all symbols in the testing data given a
tacker's previously observed actions when inferring his &LMM. The values of H; were combined into two categories
her next step. Thel*® order model performs better thandepending on whether the symbol was correctly or incoryectl
the 27¢ and the3"? order models, indicating that the nextpredicted. Results are presented in Table I. Notice thapitie
exploit has a strong correlation with the attacker’s immagali the large standard deviation, symbols that were mispredlict
previous action. This is intuitively correct, as the imnegdi have, on average, higher entropy. Further investigatioh wi
previous action often grant certain privileges for thecitta’'s help us understand this large fluctuation.

next action. Also notice that VLMM outperforms the!

order model, which suggests that, while higher order mod TABLE |

. .. . . . NTROPY OF CORRECTLY PREDICTED AND MISPREDICTED ATTACK STEP
individually may not be a good indicator, they do introduce FOR DIFEERENT ATTACK ACTION SUBSPACES

additional information that is not captured by th& order .

model. The end result for the combined VLMM prediction is [ | Category Q2.) [ Category IP {) | Description 24) |

c 0.62 £0.48 .91 +£ .60 1.07 + 0.69
i 0.93 £0.63 1.41 £ .81 1.35+0.71
c | correct predictions

¥ | incorrect or mispredictions

a top-3 accuracy approachin®% when predicting specific
methods the attacker may use next during an ongoing attack
Sequences can also be created based on attack categorie
(Q.). Figure 7 plots the prediction accuracy for the case of
Q.. The results are impressive; the VLMM achieves 90%
accuracy when predicting the next attagiein an ongoing In addition to entropy, average log-loss was used to measure
attack sequence. The finer the granularity of a data modile complexity of an entire attack sequence. The greater
the more information is needed in order for special casestt® probability assigned by a predictor to the symbols of a
be captured with statistical significance; therefore, vilie sequence, the smaller is the sequence’s average log-toss. |
same data-set, finer grained models are expected to have wiigs work, average log-loss is used to classify a sequence as
prediction rates. This can be noticed by comparing Figureemmonor sophisticated Let P be a predictor that assigns
6 (Qq) and 7 Q). Arguably, predicting at coarser levelsa probability P(x; ;) to symbolz; ;. Then, given a sequence
of granularity may also be advantageous given the dynamic= {z; 1,%;2,...x;m}, the average log-loss is defined as
nature of exploitations. Since specific exploitation meho m
can evolve due to configuration changes and discovery of new I(P,s;) = 1 Zlog P(2i j|2i 1y s T 1) (5)
vulnerabilities, modeling and predicting at coarser Isvef m

granularity may be maore des_wablg because it prov!d_es Metwo For the results presented on Table I, the VLMM was used
analysts with overall directions instead of specific yet not

necessarily accurate predictions as the predicto, and the average log-loss of each sequence
' in the test-set was computed based on (5). A threshold value
106 of T is used when classifying attack sequences as common
I(P,s) < T, versus sophisticatel{ P, s) > T'. Table Il shows
oo | % ’I‘ % {( % % the prediction rates of common and sophisticated sequences

Jj=1

classified based on different values Bfchosen empirically.
% Notice that results based on different attack action sulepa
80 % { ,E % I § are given. When comparing the two sets, one would expect
the higher log-loss sequences (sophisticated set) to baer |
40 _{ 4 prediction rates. The results shown in Table Il are in accor-
dance with this intuition.

Prediction Rate (X
H_|

R TABLE I
§ %gg_g PREDICTION RATES OF COMMON AND SOPHISTICATED SEQUENCES
fop-1] CLASSIFIED BY THRESHOLDING THEIR AVERAGE LOGLOSS.

o R Trd Ird YL

Threshold | Category| Category IP| Description
Fig. 7. Prediction rate using*®, 1%, 27?, and3"¢ order models orf2.. T Qe 2 Qa
c <15 0.91 0.86 -
Since attack behavior can be very diverse, certain attack S z;g 00'873 g'gi 8‘2?
sequences may be easier to predict than others. Information g 2920 0.69 0.50 051
entropy is a logical choice to measure the confidence or ' ' ' '

. : . c <25 0.79 0.79 0.80
uncertainty of each predicted action. LAt be the entropy s| So 0.65 0.48 0.49
of the i** symbol of s = {21, 2, ...,7,,} given a predicti_on c Z3.0 077 0.66 071
model. The larger the value fdi;, the larger the uncertainty s > 3.0 0.60 0.46 0.47
associated with the attack stéq. ¢ | common sequences

s | sophisticated sequences

H; = - Z P{Xi=a2; | X1 =21,...,Xi1 = 21}
z; €Q
X logo P{X;, =z; | Xy =21,....,Xic1 =21} (4) Sequences created based on attack descripfign énd



attack category(¢.) model the transitions within attack meth-y = = + 1 line that havex >> 1 indicate attacks that hop

ods chosen by an intruder. Another logical procedure is &zross many distinct machines.

characterize attack behavior with regards to how an attacke Given the differences in target IPs and IP transitions, one

maneuvers within a network. This is possible when attackay hypothesize that the more ‘agile’ attack sequences are

destination IP is incorporated into the model. Extending thmore ‘sophisticated’ and harder to predict. A threshold of

use of 2., a new set of sequences are created accordingZo= 2.5 was chosen to classify roughly half of the sequences

the tendency of an attack action to happen at the same olrathe data-set as common and half as sophisticated based

a different target machine from the immediate previousoacti on their average log-loss. Then, the number of target IP

(©;). The idea behind this approach is to examine the agilityansitions and the prediction rate for the sophisticatatithe

of each attack track. common attack sequences was computed as shown in Table
When incorporating the destination IP into the modeJ)( Ill. Despite the large deviations, the significant diffezenn

we noticed that only2% of the DoS attack actions werethe average IP transitions (3.71 versus 0.50) suggests that

incurred on a different machine than the one targeted Hye more agile multi-stage attacks are likely to exhibiterar

the immediate previous action. DoS is an attempt to makedering in attack actions and are harder to predict. Nadé th

a computer resource unavailable to its intended users thye approach presented in this paper allows the examination

saturating the victim machine with external communicatiorand classification of attack sequences based on target IPs

requests; therefore, this low tendency for DoS to coverrsgvewithout requiring information about network topology and

distinct machines within the same attack sequence is exghecystem configurations.

On the other hand1.6% and16.7% of the “data exfiltration”

and “backdoor, trojan, virus and worm” attacks happened on TABLE il

. . . . . VERAGE NUMBER OF ATTACK TARGET TRANSITIONS FOR SEQUENCES
a different target machine from their preceding attackoasti THAT WERE CLASSIFIED AS COMMON AND SOPHISTICATED
This suggests that “data exfiltration” and “backdoor, tngja _ .
virus and worm” are more ‘agile;” or more likely to target [__| Threshold T) | # transitions per seq Prediction rate|
multiple machines in a network. c <25 0.50+ 1.40 0.79

Figure 8 provides an insightful representation for these i Comiqgfsequence:ﬂ'i4-71 0.48
attack transitions. The x-axis represents the number of tra | ¢ sophisticated sequences

sitions in attack target within an attack sequence. Theig-ax
represents the number of unique target machines visitedey t ) ] )
attack sequence; that is, the number of distinct destindfls. C- Experiment 2: Real-time adaptation

For example, the poin{9, 3) represents a sequence in which Performance results shown in Experiment 1 can be im-
the attacker hoppefl times across different machines. The proved if the new attacks and attack sequences are incorpo-
size of the squares in Figure 8 are logarithmically propodi rated into the model as they are observed. An implementation
to the number of attack tracks that fall within the given pointhat takes correlated alerts, one by one, and continuously
For example, most of the attack sequences in our data lieupdates the model as it predicts is tested using the same
(0,1), which is represented by the large square. Thel) VMware data-set. For this second experiment, the entire-dat
coordinate tells that the attacker targeted only one machirset is fed into the real-time system according to the time
therefore there are no transitions within his or her attaaglt stamp of the alerts. This real-time implementation is gaesi
because of the computational efficiency of the VLMM model
and prediction.

Figure 9 shows the window average prediction accuracies
(top-3) achieved by the system versus the total number of
injected alerts for th&,; and (2, subspaces. The window size
is approximately 100 alerts. This set of results reveals how
B & u s the real-time system performs as the model is trained with
e e S more and more alert data. First, observe the initial tramsie
E| o periods where the system has not yet observed enough alerts t
; ; ; : build an accurate model. After approximately 1,000 alghts,

. 2 R i 0 prediction accuracies rise but fluctuate around 75% and 95%
# of target transitions within a sequence . .
for Qg and ()., respectively. The overall cumulative average
Fig. 8. The number of unique targets visited versus the numbearget Prediction accuracies for the entire data-set are 76.2586 an
transitions within the attack sequences. 94.69% forQ)y and 2., respectively.
As expected, the overall performance improves by contin-

Figure 8 can be used to characterize attack behavior. Pointaisly updating the model with new attacks and new attack
close to they = 2 line that haver >> 1 represent attackers sequences. The fluctuation observed can be partially atexdb
that hop many times across a small number of machinés. the introduction of new symbols in the corresponding
For example, point(20,3) represents an attack sequencalphabet. Figure 10 shows the percentage of symbols known
that contained20 transitions covering only three differentto the model as the alerts are injected. Note that with 1,000
destination IPs. On the other hand, points closed to or at thiert injected, only 36% and 67% of symbols have occurred in

= d a o =

= DOoao o -

# of unique targets visited

D,——l—|l\3w-hf-ﬂm“~lm



a priori knowledge and experience on the specific network,
an analyst should probably know more about new (zero-day)
attacks than the system does.

The real-time implementation also attempts to predict that
g ——DESCRIPTION a never-before-seen attack is about to happen. The system
G4l CATEGORY does not predict exactly what new attack will happen; irtea
0.1 - it predicts thatsomething newvill occur. In addition to the
regular symbols representing specific attack methods aclatt
categories, each alphabet subspace contains a speciablsymb
to track the instances when a new attack happens for the first
time. When these instances occur, the suffix tree will update
Fig. 9. Window average prediction accuracy (top-3) as slare injected to  for the branches leading to this symbol. Although there eve f
the real-time system for the cases} and (2. such instances, incorporating this symbol in the VLMM akow
warning to be generated for new attacks. In our experiment,

) .. the system is able to predict 18 out of 51 occurrences of
Qq and(2., respectively. In fact, because the alerts are injected,, attack methods(Y, = 51). While 18/51 ~ 35% is

according to their time stamps, which correspond to thekttan ot 55 impressive as the prediction accuracy presenteirearl
scenario they belong to, new symbols may not be seen fifs result shows promises that VLMM is able to not only

the system until late in the simulated time period. Even withy,nively train and predict attacks that have been obderve
new symbols being continuously introduced by differera@ltt |, ;i 4150 provide warnings of new attacks.

scenarios, the system prediction accuracies remain betwee
55% ~ 95% and betweer85% ~ 100% for Q4 and ., V. CONCLUSION

respectively. This paper introduces a framework for the characterization
and prediction of cyber attack behavior. Built upon exigtin

| I_| technologies, namely, IDSs and alert correlation engittes,
ggi i r pro_p(_)sed_ approach aims at capturing th_e sequential pr&_mert
el J_I‘ 4 residing in the correlated IDS alerts. Different from eixigt
50% —— approaches that heavily rely on network specific infornrgtio
ol i DESCRIPTION our approach does not require the modeling of network
20% | configuration and system vulnerabilities. This separai®n
T - ‘." accomplished by applying ideas from universal predictars o

T . high-level attack information. Specifically, the behavi@nds
exhibited in various fields of IDS alerts are captured via
VLMMs. Our results demonstrate that sequential properties
i.e., , the 1%t, 274 3¢ order Markov models, are all
beneficial, and a combination of them via VLMM leads to
the best prediction accuracy. Information theory basedioset

The number of symbols generally levels during the middiguch as entropy and log-loss, are proposed as indicatoh® of t
of the five scenario sets, but each scenario contributes wjttediction quality.
new symbols to thalescriptionalphabets. The last scenario Historical and ongoing alert sequences are used to build and
is an interesting case. It starts afteB,000 alerts have beenupdate suffix tree models that store statistical informmafir
observed and it introduces new specific attack methods oMM predictions. Since it does not require specific network
the model as noticeable from Figure 10. For this reason, timformation, the proposed methodology is able to adaptio ne
system performance drops temporarily. After 1,000 additio attacks and new attack sequences, regardless of changes in
alerts have been observed, the system performance risis agatwork configurations or discoveries of new exploits. Our
to around 85%-90% accuracy. This phenomenon suggests fiagults demonstrate that, soon after new attack scenamos a
adaptiveness of the proposed approach in the presencentfoduced, the prediction accuracy rises as the modetsstar
new attacks. Note that the new attacks can be introduced dapturing sufficient statistics for the new attacks andchtta
a combination of changes in network configuration and tfeequences. The new attack predictions will not be diluted by
discovery of new exploits. the historical sequences as the new symbols and new symbol
Note also that while the prediction performance fluctuategquences are different from the old ones.

for Q4 in the beginning of the last scenario, the use(Hf We believe that the battle against cyber attacks goes be-
maintains a steady performance of 95%. This is encouragipgnd password protection, encryption, intrusion detegtand
and reinforces the notion that assessing at a coarser |évehlert correlation. Having these components is essential fo
granularity helps the analysts focus on the right type @fcétd protected network operations and usage; however, a pveacti
(as opposed to relying on software to suggest specific attackeasure that projects ongoing attack actions is crucial for
that may not have been observed with enough frequencytimely mitigation of cyber attack impacts. In order to ceeat
order to yield accurate predictions). In fact, given his er ha comprehensive assessment of cyber attacks, we propose the

Prediction Accuracy

1 1001 2001 3001 4001 5001 6001 7001 8001 5001 10001

# Alerts Observed

100% —
90% -

% Symbols Observed

# Alerts Observed

Fig. 10. Percentage of Symbols Observed as alerts are idjezthe real-
time system for the cases 6f; and Q..
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presented approach to be considered as part of the cybek attag)
projection solution, complementing the projection scheme
that depends on network specific information. [20]
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